Rheological effects of biomimetic propulsion on fluid flow: An application of bio-engineering
- 24 Downloads
Abstract.
In the current article, we have studied few rheological phenomena related to the fluid transportation in various forms of flow geometries and motion of the fluid based upon the peristaltic propulsions of the boundary walls. This study is productive for mechanical engineers to design devices that are used as a remedy of complex cardiovascular treatments. This study deals with the flow of a viscous fluid through the complex paths due to the biomimetic propulsions of the boundary walls of geometries. Firstly, due to the complex nature of flow regimes, the continuity and momentum equations are governed into the form of curvilinear coordinates. Secondly, the governing equations are transformed from the laboratory frame to the wave frame by introducing a linear mathematical relation between these two frames. Thirdly, similarity transformations are utilized to convert the system of equations into the dimensionless form and at the last, these equations will reduce into the four ODEs in terms of stream function after using long wavelength approximation. The analytical solution of the governing equation is acquired by applying integration rules and mathematical values of integrating constants are obtained by using Mathematica 10 software. The significant impacts of physical parameters such as curvature parameter and non-uniform parameter in the velocity profile, pumping and trapping phenomena’s are argued expansively through graphs to the various forms of flow regimes. Physical characteristics of simple wavy walls and complex wavy walls of the curved channels are also highlighted in detail in the wave frame of reference. Moreover, a comparison among the straight channel and the curved channel is also emphasized. The results of the current study may be useful in designing the complex instruments which are used in medical engineering and treatment of physiological systems. Comprehensive information about the transportation of bio-fluids in the uniform as well as non-uniform vessels or arteries is obtained from the present study. This study provides dynamic information, to the mechanical engineers, to enhance the performance of the peristaltic micro-pumps.
References
- 1.D. Acheson, Elementary Fluid Dynamics (Oxford University Press, Oxford, 1990)Google Scholar
- 2.J. Lighthill, Mathematical Bio Fluid Dynamics (SIAM, Philadelphia, 1975)Google Scholar
- 3.J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1980)Google Scholar
- 4.J. West, Respiratory Physiology: The Essentials (Williams & Wilkins, Baltimore, 1985)Google Scholar
- 5.J. Blazek, Computational Fluid Dynamics: Principles and Applications, 2nd Ed. (Elsevier, New York, 2005)Google Scholar
- 6.A.L. Chorin, A Mathematical Introduction to Fluid Mechanics, 3rd Ed. (Springer, New York, 1993)zbMATHCrossRefGoogle Scholar
- 7.R. Darby, Chemical Engineering Fluid Mechanics, 2nd Ed. (Marcel Dekker, New York, 2001)Google Scholar
- 8.E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, New York, 2004)Google Scholar
- 9.T.W. Latham, Fluid Motion in a Peristaltic Pump, MS thesis, MIT, Cambridge (1966)Google Scholar
- 10.J.C. Burns, T. Parkes, J. Fluid Mech. 29, 731 (1967)ADSCrossRefGoogle Scholar
- 11.A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, J. Fluid Mech. 37, 799 (1969)ADSCrossRefGoogle Scholar
- 12.W.M. Bayliss, E.H. Starling, J. Physiol. 24, 99 (1899)CrossRefGoogle Scholar
- 13.Y.C. Fung, C.S. Yih, J. Appl. Mech. 35, 669 (1968)ADSCrossRefGoogle Scholar
- 14.F. Yin, Y.C. Fung, J. Appl. Mech. 36, 579 (1969)ADSCrossRefGoogle Scholar
- 15.S. Takabatake, K. Ayukawa, J. Fluid Mech. 122, 439 (1982)ADSCrossRefGoogle Scholar
- 16.S. Takabatake, K. Ayukawa, A. Mori, J. Fluid Mech. 193, 269 (1988)ADSCrossRefGoogle Scholar
- 17.N. Ali, Y. Wang, T. Hayat, M. Oberlack, Can. J. Phys. 87, 1047 (2009)ADSCrossRefGoogle Scholar
- 18.T.D. Brown, T.K. Hung, J. Fluid Mech. 83, 249 (1977)ADSCrossRefGoogle Scholar
- 19.T.K. Hung, T.D. Brown, J. Fluid Mech. 73, 77 (1976)ADSCrossRefGoogle Scholar
- 20.T. Hayat, N. Ali, Appl. Math. Mod. 32, 761 (2008)CrossRefGoogle Scholar
- 21.S. Srinivas, R. Gayathri, Appl. Math. Comput. 215, 185 (2009)MathSciNetGoogle Scholar
- 22.K.S. Mekheimer, Y. Abd Elmaboud, Physica A 372, 1657 (2008)Google Scholar
- 23.A. Ebaid, Phys. Lett. A 372, 4493 (2008)ADSCrossRefGoogle Scholar
- 24.K.K. Raju, R. Devanathan, Rheol. Acta 13, 944 (1974)CrossRefGoogle Scholar
- 25.N. Ali, Y. Wang, T. Hayat, M. Oberlack, Biorheology 45, 611 (2008)Google Scholar
- 26.N. Ali, Y. Wang, T. Hayat, M. Oberlack, Can. J. Phys. 87, 1047 (2009)ADSCrossRefGoogle Scholar
- 27.N. Ali, T. Javed, Z. Naturforsch. 68a, 515 (2013)ADSCrossRefGoogle Scholar
- 28.W.R. Dean, Phil. Mag. 4, 208 (1927)CrossRefGoogle Scholar
- 29.W.R. Dean, Phil. Mag. 5, 673 (1928)CrossRefGoogle Scholar
- 30.H. Sato, T. Kawai, T. Fujita, M. Okabe, Trans. Jpn. Soc. Mech. Eng. B 66, 679 (2000)CrossRefGoogle Scholar
- 31.N. Ali, M. Sajid, T. Hayat, Z. Naturforsch. A 65a, 191 (2010)ADSCrossRefGoogle Scholar
- 32.N. Ali, M. Sajid, T. Javed, Z. Abbas, Int. J. Heat Mass Transfer 53, 3319 (2010)CrossRefGoogle Scholar
- 33.N. Ali, K. Javid, M. Sajid, O.A. Beg, Comput. Methods Biomech. Biomed. Eng. 19, 614 (2016)CrossRefGoogle Scholar
- 34.S. Hina, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transfer 55, 351 (2012)Google Scholar
- 35.S. Hina, M. Mustafa, T. Hayat, A. Alsaedi, ASME J. Appl. Mech. 80, 024501 (2013)ADSCrossRefGoogle Scholar
- 36.T. Hayat, S. Hina, A.A. Hendi, S. Asghar, Int. J. Heat Mass Transfer 54, 5126 (2011)CrossRefGoogle Scholar
- 37.V.K. Narla, K.M. Prasad, J.V. Ramanamurthy, Chin. J. Eng. 2013, 582390 (2013)CrossRefGoogle Scholar
- 38.J.V. Ramanamurthy, K.M. Prasad, V.K. Narla, Phys. Fluids 25, 091903 (2013)ADSCrossRefGoogle Scholar
- 39.A. Kalantari, K. Sadeghy, S. Sadeqi, Ann. Trans. Nordic Rheol. Soc. 21, 11155 (2013)Google Scholar
- 40.N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Int. J. Heat Mass Transfer 94, 500 (2016)CrossRefGoogle Scholar
- 41.N. Ali, M. Sajid, Z. Abbas, T. Javed, Eur. J. Mech.-B/Fluids 29, 387 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 42.A.M. Sobh, H.H. Mady, J. Appl. Sci. 8, 1085 (2008)ADSCrossRefGoogle Scholar
- 43.Kh.S. Mekheimer, Arab. J. Sci. Eng. 54, 532 (2005)Google Scholar
- 44.M. Mishra, A.R. Rao, Z. Angew. Math. Phys. 54, 532 (2003)MathSciNetCrossRefGoogle Scholar
- 45.E.F. Elshehawey, E.M. Elghazy, A. Ebaid, Appl. Math. Comput. 182, 140 (2006)MathSciNetGoogle Scholar
- 46.D. Tripathi, A. Yadav, O. Anwar Beg, R. Kumar, Microvasc. Res. 117, 28 (2018)CrossRefGoogle Scholar
- 47.Kh.S. Mekheimer, Appl. Math. Comput. 153, 763 (2004)MathSciNetGoogle Scholar
- 48.S. Noreen, Biomater. Med. Appl. 1, 1 (2017)Google Scholar
- 49.T.F. Zien, S. Ostrach, J. Biomech. 3, 63 (1970)CrossRefGoogle Scholar
- 50.M.J. Manton, Fluid Mech. 68, 467 (1975)ADSCrossRefGoogle Scholar
- 51.T. El-Bashir, Fluid Flow at Small Reynolds Number: Numerical Applications (Hikari, 2006)Google Scholar
- 52.M.Y. Jaffrin, A.H. Shapiro, Annu. Rev. Fluid Mech. 3, 13 (1971)ADSCrossRefGoogle Scholar