Advertisement

Characteristics of lump solutions to a (3 + 1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science

  • Jian-Guo Liu
  • Wen-Hui Zhu
  • Yan HeEmail author
  • Zhi-Qiang Lei
Regular Article

Abstract.

In this paper, a (3 + 1) -dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science is investigated. Lump solutions are presented based on the Hirota's bilinear form and symbolic computation, and characteristics of lump solutions, such as the bright lump wave and the bright-dark lump wave, are demonstrated in some 3D graphs and contour plots.

References

  1. 1.
    D.A. Klimachkov, A.S. Petrosyan, J. Exp. Theor. Phys. 125, 597 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    B. Sankar, F. Alfred, Multidimens. Syst. Signal Process. 26, 1001 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Alquran, M. Ali, K. Alkhaled, Nonlinear Stud. 19, 555 (2012)MathSciNetGoogle Scholar
  4. 4.
    W. Hereman, Shallow water waves and solitary waves, in Mathematics of Complexity and Dynamical Systems (Springer Science + Business Media, LLC, 2012)  https://doi.org/10.1007/978-1-4614-1806-1
  5. 5.
    Y.L. Wang, Y.T. Gao, S.L. Jia, Z.Z. Lan, G.F. Deng, J.J. Su, Mod. Phys. Lett. B 31, 1750012 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M. Shinbrot, J. Eng. Math. 4, 293 (1970)CrossRefGoogle Scholar
  7. 7.
    M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci. 19, 943 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Chen, R. Liu, Appl. Math. Comput. 260, 397 (2015)MathSciNetGoogle Scholar
  9. 9.
    Z.F. Zeng, J.G. Liu, B. Nie, Nonlinear Dyn. 86, 667 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Tian, Y.T. Gao, Comput. Phys. Commun. 95, 139 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    E.M.E. Zayed, J. Appl. Math. Inform. 28, 383 (2010)Google Scholar
  12. 12.
    Y.N. Tang, W.X. Ma, W. Xu, Chin. Phys. B 21, 85 (2012)Google Scholar
  13. 13.
    J. Wu, X. Xing, X. Geng, Adv. Math. Phys. 4, 1 (2015)ADSGoogle Scholar
  14. 14.
    X.P. Xin, L.L. Zhang, Y.L. Xia, H.Z. Liu, Appl. Math. Lett. 94, 112 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M.S. Osman, Nonlinear Dyn. 96, 1491 (2019)CrossRefGoogle Scholar
  16. 16.
    G.F. Deng, Y.T. Gao, Eur. Phys. J. Plus 132, 255 (2017)CrossRefGoogle Scholar
  17. 17.
    Q.M. Huang, Appl. Math. Lett. 93, 29 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Q.M. Huang, Y.T. Gao, L. Hu, Appl. Math. Comput. 352, 270 (2019)MathSciNetGoogle Scholar
  19. 19.
    J.G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, Nonlinear Dyn. 95, 1027 (2019)CrossRefGoogle Scholar
  20. 20.
    Q.M. Huang, Y.T. Gao, S.L. Jia, Y.L. Wang, G.F. Deng, Nonlinear Dyn. 87, 2529 (2017)CrossRefGoogle Scholar
  21. 21.
    E.M.E. Zayeda, K.A. Gepreelb, J. Math. Phys. 50, 013502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M.T. Darvishi, M. Najafi, Int. J. Comput. Math. Sci. 1, 25C27 (2012)Google Scholar
  23. 23.
    J.G. Liu, W.H. Zhu, Comput. Math. Appl. 78, 848 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    W.X. Ma, X. Yong, H.Q. Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Z.Z. Lan, B. Gao, M.J. Du, Chaos, Solitons Fractals 111, 169 (2018)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    W.X. Ma, J. Geom. Phys. 133, 10 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Y.N. Tang, S.Q. Tao, Q. Guan, Nonlinear Dyn. 89, 429 (2017)CrossRefGoogle Scholar
  28. 28.
    H.Q. Sun, A.H. Chen, Appl. Math. Lett. 68, 55 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S.L. Jia, Y.T. Gao, L. Hu, Optik 142, 90 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    J.Y. Yang, W.X. Ma, Z. Qin, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    W.X. Ma, J. Geom. Phys. 132, 45 (2018)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    W. Tan, Z.D. Dai, H.P. Dai, Therm. Sci. 21, 1673 (2017)CrossRefGoogle Scholar
  33. 33.
    A.M. Wazwaz, Nonlinear Dyn. 91, 877 (2018)CrossRefGoogle Scholar
  34. 34.
    L. Zou, Z.B. Yu, S.F. Tian, L.L. Feng, J. Li, Mod. Phys. Lett. B 32, 1850104 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    H.Q. Zhang, W.X. Ma, Nonlinear Dyn. 87, 2305 (2017)CrossRefGoogle Scholar
  36. 36.
    W.X. Ma, Y. Zhou, J. Differ. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    A.M. Wazwaz, Nonlinear Dyn. 93, 1371 (2018)CrossRefGoogle Scholar
  38. 38.
    X. Lü, J.P. Wang, F.H. Lin, X.W. Zhou, Nonlinear Dyn. 91, 1249 (2018)CrossRefGoogle Scholar
  39. 39.
    M.D. Chen, X. Li, Y. Wang, B. Li, Commun. Theor. Phys. 67, 595 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    W.X. Ma, X.L. Yong, H.Q. Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    S.T. Chen, W.X. Ma, Comput. Math. Appl. 76, 1680 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian-Guo Liu
    • 1
  • Wen-Hui Zhu
    • 2
  • Yan He
    • 1
    Email author
  • Zhi-Qiang Lei
    • 1
  1. 1.College of ComputerJiangxi University of Traditional Chinese MedicineJiangxiChina
  2. 2.Institute of artificial intelligenceNanchang Institute of Science and TechnologyJiangxiChina

Personalised recommendations