Advertisement

Heat transfer rate of power law fluid flow with variable thermal conductivity through a porous annular sector duct

  • Farhan AhmedEmail author
Regular Article
  • 6 Downloads

Abstract.

The impact of power law velocity gradients dependent thermal conductivity on forced convective flow of power law fluid through an annular sector duct has been studied in this article. The Darcy Brinkman Forchheimer model is taken into account to describe the flow field. Governing non-linear momentum and energy equations have been transformed into a dimensionless form with the help of dimensionless parameters. By using dimensionless quantities such as friction factor, fRe and average Nusselt number, Nu , characteristics of forced convective flow of power law fluid are analyzed for different values of power law index, n.

Notes

References

  1. 1.
    K. Chen, L. Guo, X. Xie, W. Liu, Int. J. Heat Mass Transfer 122, 459 (2018)CrossRefGoogle Scholar
  2. 2.
    M.A. Yassin, M.H. Shedid, H.M.A. El-Hameed, A. Basheer, Int. J. Therm. Sci. 134, 653 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Kouidri, B. Madani, Chem. Eng. Process. 121, 162 (2017)CrossRefGoogle Scholar
  4. 4.
    S.S. Chakrabarti, P.K. Das, I. Ghosh, Int. J. Mech. Sci. 149, 112 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Yang, W. Wang, C. Yang, L. Jin, T.J. Lu, Int. J. Heat Mass Transfer 98, 60 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Ahmed, M. Iqbal, I. Pop, J. Therm. Anal. Calorim. 135, 861 (2019)CrossRefGoogle Scholar
  7. 7.
    F. Ahmed, M. Iqbal, Int. J. Mech. Sci. 130, 508 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Welsford, A.M. Bayomy, M.Z. Saghir, Therm. Sci. Eng. Progress 7, 61 (2018)CrossRefGoogle Scholar
  9. 9.
    F. Ahmed, N.S. Akbar, Chin. J. Phys. 55, 1400 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Ahmed, N.S. Akbar, Int. J. Mech. Sci. 122, 362 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Lin, L. Zheng, X. Zhang, Int. J. Heat Mass Transfer 77, 708 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Pal, S. Chatterjee, Appl. Math. Comput. 219, 7556 (2013)MathSciNetGoogle Scholar
  13. 13.
    Y. Lin, L. Zheng, G. Chen, Powder Technol. 274, 324 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Zheng, Y. Lin, X. Zhang, J. Franklin Inst. 349, 2585 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, 2011)Google Scholar
  16. 16.
    M. Iqbal, H. Afaq, J. Porous Media 18, 679 (2015)CrossRefGoogle Scholar
  17. 17.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor and Francis, 1971)Google Scholar
  18. 18.
    M. Peric, J.H. Ferziger, Computational Methods for Fluid Dynamics (Springer, 2002)Google Scholar
  19. 19.
    F. Ahmed, M. Iqbal, N.S. Akbar, Eur. Phys. J. Plus 131, 341 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Natural SciencesNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations