Advertisement

Spherical and cylindrical conductive thermal diodes based on VO2

  • Suraju Olawale Kasali
  • Jose Ordonez-MirandaEmail author
  • Karl Joulain
Regular Article
  • 37 Downloads

Abstract.

We theoretically and comparatively study the performance of spherical and cylindrical conductive thermal diodes operating with a phase-change material, whose thermal conductivity significantly changes in a narrow interval of temperatures. Simple analytical expressions are derived for the temperature profiles, heat flows and optimal rectification factors of both diodes. It is shown that the diode geometry has a strong impact on the temperatures and heat flows, but not so much on the diode rectification factor. Optimal rectification factors of 20.8% and 20.7% are obtained for the spherical and cylindrical diodes operating with a temperature difference of 376−300 = 76 K and 376.5-300 = 76.5 K between the terminals of VO2 and a phase invariant material, respectively. These similar rectification factors could be enhanced with a material thermal conductivity exhibiting a higher contrast than that of VO2 . The obtained results can thus be useful to guide the development of phase-change materials able to optimize the rectification of conductive thermal diodes with different geometries.

References

  1. 1.
    N.A. Roberts, D. Walker, Int. J. Therm. Sci. 50, 648 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    B. Hu, D. He, L. Yang, Y. Zhang, Phys. Rev. E 74, 060101 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    E. Pereira, Phys. Rev. E 83, 031106 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Zhang, Y.-W. Zhang, Chin. Phys. B 26, 034401 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    K. Garcia-Garcia, J. Alvarez-Quintana, Int. J. Therm. Sci. 81, 76 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Zhang, H. Zhang, Nanoscale 3, 4604 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    D. Segal, Phys. Rev. Lett. 100, 105901 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, D.D.S. Meneses, Opt. Express 23, A1388 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, K. Joulain, Phys. Rev. Appl. 6, 054003 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    P. Ben-Abdallah, S.-A. Biehs, Appl. Phys. Lett. 103, 191907 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    E. Nefzaoui, J. Drevillon, Y. Ezzahri, K. Joulain, Appl. Opt. 53, 3479 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    L.-A. Wu, D. Segal, Phys. Rev. Lett. 102, 095503 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    D. Sawaki, W. Kobayashi, Y. Moritomo, I. Terasaki, Appl. Phys. Lett. 98, 081915 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    C. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    W. Kobayashi, Y. Teraoka, I. Terasaki, Appl. Phys. Lett. 95, 171905 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    P. Van Zwol, L. Ranno, J. Chevrier, Phys. Rev. Lett. 108, 234301 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yang, S. Basu, L. Wang, Appl. Phys. Lett. 103, 163101 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    R. Scheibner, M. König, D. Reuter, A. Wieck, C. Gould, H. Buhmann, L. Molenkamp, New J. Phys. 10, 083016 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    K. Joulain, Y. Ezzahri, J. Drevillon, P. Ben-Abdallah, Appl. Phys. Lett. 106, 133505 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang et al., Science 355, 371 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    M.M. Qazilbash, A. Schafgans, K. Burch, S. Yun, B. Chae, B. Kim, H.-T. Kim, D. Basov, Phys. Rev. B 77, 115121 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    J. Ordonez-Miranda, Y. Ezzahri, K. Joulain, J. Drevillon, J. Alvarado-Gil, Phys. Rev. B 98, 075144 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    H. Wang, X. Yi, S. Chen, X. Fu, Sens. Actuator A Phys. 122, 108 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Ito, K. Nishikawa, H. Iizuka, H. Toshiyoshi, Appl. Phys. Lett. 105, 253503 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    K. Ito, K. Nishikawa, H. Iizuka, Appl. Phys. Lett. 108, 053507 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    P. Ben-Abdallah, AIP Adv. 7, 065002 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    M. Rini, Z. Hao, R. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. Kieffer, A. Fujimori, M. Onoda, S. Wall, Appl. Phys. Lett. 92, 181904 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Cho, N.M. Jokerst et al., Appl. Phys. Lett. 93, 024101 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, K. Joulain, J. Appl. Phys. 119, 203105 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M.M. Qazilbash, Z. Li, V. Podzorov, M. Brehm, F. Keilmann, B. Chae, H.-T. Kim, D. Basov, Appl. Phys. Lett. 92, 241906 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    M. Peyrard, Europhys. Lett. 76, 49 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    J. Ordonez-Miranda, J.M. Hill, K. Joulain, Y. Ezzahri, J. Drevillon, J. Appl. Phys. 123, 085102 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    H. Sadat, V. Le Dez, Mech. Res. Commun. 76, 48 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Ordonez-Miranda, K. Joulain, D. De Sousa Meneses, Y. Ezzahri, J. Drevillon, J. Appl. Phys. 122, 093105 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Pprime, CNRSUniversité de Poitiers, ISAE-ENSMAChasseneuilFrance

Personalised recommendations