The energy dependence of micro black hole horizon in quantum gravity theory

  • Lei FengEmail author
Regular Article


The energy dependence of the deflection angle is a common prediction in some quantum gravity theories when the impact parameters are much larger than the photon wavelength. For low energy photons, the deflection angle recovers to the prediction of GR, but it reduces to zero for infinite energy photons. In this paper, we develop an effective approach to calculate the trajectory of photons and other deflection-related quantities semiclassically by replacing \( h_{\mu \nu}\) with \( h_{\mu \nu} \times f(E)\) to include the correction of quantum gravity. This approach could provide more information for photons traveling in an external gravitational field. We compute the horizon of a micro black hole with this method and find that they are all energy-dependent and decrease to zero as the energy increases to infinity.


  1. 1.
    K.-H. Lo, K. Young, B.Y.P. Lee, Am. J. Phys. 81, 695 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    D. Lebach et al., Phys. Rev. Lett. 75, 1439 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    E. Fomalont, S. Kopeikin, G. Lanyi, J. Benson, Astrophys. J. 699, 1395 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    I.I. Shapiro, Phys. Rev. Lett. 13, 789 (1964)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Rindler, Relativity: Special, General, and Cosmological, 2nd ed. (Oxford University Press, Oxford, 2006)Google Scholar
  6. 6.
    W.T. Ni, Solar-system tests of the relativistic gravity, arXiv:1611.06025 (2016)Google Scholar
  7. 7.
    L.V.E. Koopmans, T. Treu, Astrophys. J. 583, 137 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Treu, L.V.E. Koopmans, Astrophys. J. 575, 87 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    T. Treu, L.V.E. Koopmans, Astrophys. J. 611, 739 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A.S. Bolton, S. Burles, L.V.E. Koopmans, T. Treu, R. Gavazzi, L.A. Moustakas, R. Wayth, D.J. Schlegel, Astrophys. J. 682, 964 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M.W. Auger, T. Treu, A.S. Bolton, R. Gavazzi, L.V.E. Koopmans, P.J. Marshall, K. Bundy, L.A. Moustakas, Astrophys. J. 705, 1099 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Brownstein et al., Astrophys. J. 744, 41 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    R. Gavazzi, P.J. Marshall, T. Treu, A. Sonnenfeld, Astrophys. J. 785, 144 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Sonnenfeld, R. Gavazzi, S.H. Suyu, T. Treu, P.J. Marshall, Astrophys. J. 777, 97 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Sonnenfeld, T. Treu, R. Gavazzi, S.H. Suyu, P.J. Marshall, M.W. Auger, C. Nipoti, Astrophys. J. 777, 98 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    H.T. Diehl et al., Astrophys. J. Suppl. 232, 15 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    H. Weyl, Space-Time Matter (Dover, 1952)Google Scholar
  18. 18.
    A. Eddington, The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, 1924)Google Scholar
  19. 19.
    K. Stelle, Phys. Rev. D 16, 953 (1977)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Modesto, Phys. Rev. D 86, 044005 (2012) arXiv:1107.2403v1 [hep-th]ADSCrossRefGoogle Scholar
  21. 21.
    T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012) arXiv:1110.5249 [grqc]ADSCrossRefGoogle Scholar
  22. 22.
    L. Modesto, Super-renormalizable Higher-Derivative Quantum gravity, arXiv:1202.0008v1 [hep-th]Google Scholar
  23. 23.
    L. Modesto, T. de Paula Netto, Ilya.L. Shapiro, High Energy Phys. 2015, 98 (2015) arXiv:1412.0740 [hep-th]CrossRefGoogle Scholar
  24. 24.
    A. Accioly, J. Helayël-Neto, B. Giacchini, W. Herdy, Phys. Rev. D 91, 125009 (2015)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Accioly, arXiv:1604.07348Google Scholar
  26. 26.
    A. Accioly, B.L. Giacchini, I.L. Shapiro, arXiv:1610.05260Google Scholar
  27. 27.
    R. Paszko, A. Accioly, Class. Quantum Grav. 27, 145012 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A. Accioly, R. Paszko, Int. J. Mod. Phys. D 18, 2107 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    A. Accioly, R. Paszko, Adv. Stud. Theor. Phys. 3, 65 (2009)MathSciNetGoogle Scholar
  30. 30.
    A. Accioly, R. Paszko, Phys. Rev. D 78, 064002 (2008)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Accioly, R. Aldrovandi, R. Paszko, Int. J. Mod. Phys. D 15, 2249 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Lei Feng, Phys. Rev. D 95, 084015 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    J. Edholm, A. Koshelev, A. Mazumdar, Universality of testing ghost-free gravity arXiv:1604.01989 [grqc] (2016)Google Scholar
  34. 34.
    D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Heckel, C.D. Hoyle, H.E. Swanson, Phys. Rev. Lett. 98, 021101 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Chenmei Xu, Yisong Yang, J. Math. Phys. 59, 032501 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations