Advertisement

Carbon nanoparticles assisted energy transport mechanism in leaves: A thermal lens study

  • M. S. Swapna
  • Vimal Raj
  • H. V. Saritha Devi
  • P. M. Radhamany
  • S. SankararamanEmail author
Regular Article

Abstract.

In the world of increasing population and pollution due to carbon emissions, the research for effective utilization of futile diesel soot for fruitful applications has become a necessity for a sustainable development. The contribution to pollution from vehicles and industries due to the aging of engines has caused a crisis. Carbon nanoparticles (CNPs) have been the subject of interest because of their good physical, chemical, and biological properties. The present work investigates the role of CNPs produced by internal combustion engines on the energy transport mechanism among leaf pigments using the sensitive and nondestructive single beam thermal lens technique. The studies reveal the absorption changes by various chlorophyll pigments with the concentration of CNPs sprayed on the leaves. Though for low concentrations CNPs lower the photon absorbance by chlorophyll pigments, the effect gets reversed at higher concentrations. The variation of thermal diffusivity with CNP concentration and its role in the energy transport mechanism among chlorophyll pigments are also studied. It is found that CNP concentrations of 625-2500mg/l are good for better intra-pigment energy transport leading to increased rate of photosynthesis and plant yield and thereby helping in attaining food security. The variation of CNP assisted energy transport among leaf pigments on the production of nicotinamide adenine dinucleotide phosphate (NADPH) and carbohydrates is also studied with ultraviolet (UV) and near-infrared (NIR) spectroscopy.

References

  1. 1.
    R. Sheykhbaglou, M. Sedghi, M. Tajbakhsh Shishvan, R. SeyedSharifi, Not. Sci. Biol. 2, 112 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, C.A. Mirkin, S.J. Park, ACS Nano 26, 1049 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Singh, J. Nanosci. Nanotechnol. 10, 7906 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Adhikari, S. Kundu, A.K. Biswas, J.C. Tarafdar, A.S. Rao, J. Agric. Sci. Technol. A 2, 815 (2012)Google Scholar
  5. 5.
    O. Zaytseva, G. Neumann, Chem. Biol. Technol. Agric. 3, 17 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Biswas, C.Y. Wu, J. Air Waste Manag. Assoc. 55, 708 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Zhu, E. Oberdoster, M.L. Haasch, Mar. Environ. Res. 62, S5 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Zhu, J.Q. Han, Y. Jin, J. Environ. Monit. 10, 713 (2008)CrossRefGoogle Scholar
  9. 9.
    S.H. Ko, C.P. Grigoropoulos (Editors), Nanotechnology’s wonder material: synthesis of carbon nanotubes, in Hierarchical Nanostructures for Energy Devices (Royal Society of Chemistry, Cambridge, 2014) pp. 26--58Google Scholar
  10. 10.
    K. Novoselov, Phys. World 22, 27 (2009)CrossRefGoogle Scholar
  11. 11.
    M.S. Swapna, S. Sankararaman, J. Mater. Sci. Nanotechnol. 5, 104 (2017)Google Scholar
  12. 12.
    M.S. Swapna, V.M. Pooja, S.A. Anamika, S. Soumya, S. Sankararaman, JOJ Mater. Sci. 1, 555566 (2017)Google Scholar
  13. 13.
    G. Hoch, B. Kok, Annu. Rev. Plant Physiol. 12, 155 (1961)CrossRefGoogle Scholar
  14. 14.
    X.J. Wang, L.P. Wang, O.S. Adewuyi, B.A. Cola, Z.M. Zhang, Appl. Phys. Lett. 97, 163116 (2010)CrossRefADSGoogle Scholar
  15. 15.
    S. Riya, M.S. Swapna, R. Vimal, H. Misha, S. Sankararaman, Mater. Res. Express 5, 075001 (2018)CrossRefADSGoogle Scholar
  16. 16.
    M.S. Swapna, S. Manjusha, R. Vimal, H. Misha, S. Sankararaman, J. Opt. Soc. Am. B 35, 1662 (2018)CrossRefADSGoogle Scholar
  17. 17.
    R. Zamiri, B.Z. Azmi, E. Shahriari, K. Naghavi, E. Saion, Z. Rizwan, M.S. Husin, J. Laser Appl. 23, 042002 (2011)CrossRefADSGoogle Scholar
  18. 18.
    C.V. Bindhu, S.S. Harilal, V.P.N. Nampoori, C.P.G. Vallabhan, Soc. Photo-Opt. Instrum. Eng. 37, 2791 (1998)Google Scholar
  19. 19.
    V. Raj, S. Soumya, M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 115504 (2018)CrossRefADSGoogle Scholar
  20. 20.
    S. Hussain, P. Jha, A. Chouksey, R. Raman, S.S. Islam, T. Islam, P.K. Choudary, Harsh, J. Mod. Phys. 2, 538 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Mahalingam, B. Parasuram, T. Maiyalagan, S. Sundaram, J. Environ. Nanotechnol. 1, 53 (2012)Google Scholar
  22. 22.
    M.S. Swapna, C. Beryl, S.S. Reshma, Veena Chandran, V.S. Vishnu, P.M. Radhamany, S. Sankararaman, BioNanoSci. 7, 583 (2017)CrossRefGoogle Scholar
  23. 23.
    B.N. Sahoo, B. Kandasubramanian, RSC Adv. 4, 11331 (2014)CrossRefGoogle Scholar
  24. 24.
    Govindjee, B.Z. Braun, Algal Physiology and Biochemistry, edited by W.D.P. Stewart (Blackwell Scientific Publication Ltd., Oxford, 1974) pp. 346--390Google Scholar
  25. 25.
    H.K. Lichtenthaler, Chlorophylls and Carotenoid: Pigments of Photosynthetic Biomembranes. Methods in Enzymology (Acadamic Press, San Diego, New York, 1987) pp. 350--382Google Scholar
  26. 26.
    S.W. Wright, S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornlans, D. Repera, Welschmeyer, Mar Ecol. Prog. Ser. 77, 183 (1997)CrossRefADSGoogle Scholar
  27. 27.
    S. Yoshida, D.A. Forno, J.H. Cock, K.A. Geomez, in Laboratory Manual for Physiological Studies of Rice, 3rd ed. (IRRI, Manila, 1976)Google Scholar
  28. 28.
    S.A. Joseph, M. Hari, S. Mathew, G. Sharma, V.M. Hadiya, P. Radhakrishnan, V.P.N. Nampoori, Opt. Commun. 283, 313 (2010)CrossRefADSGoogle Scholar
  29. 29.
    R.C.C. Liete, R.S. Moore, J.R. Whinnery, Appl. Phys. Lett. 5, 141 (1964)CrossRefADSGoogle Scholar
  30. 30.
    M.S. Swapna, H.V. Saritha Devi, Vimal Raj, S. Sankararaman, Eur. Phys. J. Plus 133, 106 (2018)CrossRefGoogle Scholar
  31. 31.
    M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 016203 (2018)CrossRefADSGoogle Scholar
  32. 32.
    J.P. Giraldo, M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew, M.S. Strano, Nat. Mater. 13, 400 (2014)CrossRefADSGoogle Scholar
  33. 33.
    M.V. Khodakovskaya, K. de Silva, A.S. Biris, E. Dervishi, H. Villagarcia, ACS Nano 6, 2128 (2012)CrossRefGoogle Scholar
  34. 34.
    J.E. Canas, M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E.H. Lee, D. Olszyk, Environ. Toxicol. Chem. 27, 1922 (2008)CrossRefGoogle Scholar
  35. 35.
    M.V. Khodakovskaya, B.S. Kim, J.N. Kim, M. Alimohammadi, E. Dervishi, T. Mustafa, C.E. Cernigala, Small 9, 115 (2013)CrossRefGoogle Scholar
  36. 36.
    Mondal, R. Basu, S. Das, P. Nandy, J. Nanoparticle Res. 13, 4519 (2011)CrossRefADSGoogle Scholar
  37. 37.
    A. Boghossian, M.-H. Ham, J.H., Choi, M.S. Strano, Energy Environ. Sci. 4, 3834 (2011)CrossRefGoogle Scholar
  38. 38.
    J.O. Calkins, Y. Umasankar, H. O’Neill, R.P. Ramasamy, Energy Environ. Sci. 6, 1891 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Vithange, M. Seneviratne, M. Ahmad, B. Sarkar, S.O. Yong, Environ. Geochem. Health 39, 1421 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Boghossian, M.-H. Ham, J.H. Choi, M.S. Strano, Energy Environ. Sci. 4, 3834 (2011)CrossRefGoogle Scholar
  41. 41.
    J. De Ruyck, M. Fameree, J. Wouters, E.A. Perpete, J. Preat, D. Jacquemin, Chem. Phys. Lett. 450, 119 (2007)CrossRefADSGoogle Scholar
  42. 42.
    E.J. Dell, F. Ganske, Detections of NADH and NADPH with the Omega’s High Speed, Full UV/Vis Absorbance Spectrometer (BMG LABTECH, GmbH, Offenburg, 2008)Google Scholar
  43. 43.
    S. Steigenberger, F. Terjung, H.-P. Grossart, R. Reuter, EARSeL eProc. 3, 18 (2004)Google Scholar
  44. 44.
    L. Kaijanen, M. Paakkunainen, S. Pietarinen, E. Jernström, S.-P. Reinikainen, Int. J. Electrochem. Sci. 10, 2950 (2015)Google Scholar
  45. 45.
    S. Gunasekaran, M.K. Devi, Asian J. Chem. 19, 3363 (2007)Google Scholar
  46. 46.
    C. Sarazin, N. Delaunay, C. Costanza, V. Eudes, J.-M. Mallet, P. Gareil, Anal. Chem. 83, 7381 (2011)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    M.G. López, A.S. García-González, E. Franco-Robles, in Developments in Near-Infrared Spectroscopy (InTech, 2017)Google Scholar
  49. 49.
    M. Vithange, M. Seneviratne, M. Ahmad, B.Sarkar, S.O. Yong, Environ. Geochem. Health 39, 1421 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Optoelectronics and Department of Nanoscience and NanotechnologyUniversity of KeralaTrivandrumIndia
  2. 2.Department of BotanyUniversity of KeralaTrivandrumIndia

Personalised recommendations