Advertisement

Fractional calculus with power law: The cradle of our ancestors

  • Abdon AtanganaEmail author
  • Zakia Hammouch
Regular Article
Part of the following topical collections:
  1. Focus Point on Fractional Differential Equations in Physics: Recent Advantages and Future Direction

Abstract.

The application of differential operators based on convolution settings has become the centre of investigation of researchers from all the corners of the globe. Several discussions have been raised and many suggestions have been done. The aim of this paper is to answer some outstanding questions that have been asked and also correct some claims that have been made for many years within the field. We have, in addition to this, suggested some fractional operators that could be used in the future for modelling and theoretical investigations. We have constructed a new class of partial integro-differential equations with fractional operators based on the new generalized Mittag-Leffler function. We presented a detailed discussion underpinning the conditions for which the new equation is well-posed. We suggested to solve this equation, a new numerical methodology that will be used to handle such equation numerically.

References

  1. 1.
    Benson Farb, R. Keith Dennis, Noncommutative Algebra, in Graduate Texts in Mathematics, Vol. 144 (Springer Science & Business Media, 2012)Google Scholar
  2. 2.
    Alain Connes, Michael R. Douglas, Albert Schwarz, JHEP 02, 003 (1998)CrossRefGoogle Scholar
  3. 3.
    M. Artin, J.J. Zhang, Adv. Math. 109, 228 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yuri I. Manin, Quantum Groups and Non-commutative Geometry (CRM, Montreal, 1988)Google Scholar
  5. 5.
    Yuri I. Manin, Topics in Noncommutative Geometry (Princeton, 1991)Google Scholar
  6. 6.
    A. Bondal, M. van den Bergh, arXiv:math/0204218 [math. AG]Google Scholar
  7. 7.
    A. Bondal, D. Orlov, Compos. Math. 125, 327 (2001)CrossRefGoogle Scholar
  8. 8.
    Carl B. Boyer, A History of Mathematics, 2nd ed. (John Wiley & Sons, Inc., 1991)Google Scholar
  9. 9.
    S. Gandz, Osiris 1, 263 (1936)CrossRefGoogle Scholar
  10. 10.
    I.N. Herstein, Topics in Algebra (Ginn and Company, 1964)Google Scholar
  11. 11.
    Richard S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, 2007)Google Scholar
  12. 12.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    G.A. Tsekouras, C. Tsallis, Phys. Rev. E 71, 046144 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in North-Holland Mathematical Studies, Vol. 204 (Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006)Google Scholar
  15. 15.
    Michele Caputo, Mauro Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  16. 16.
    Jorge Losada, Juan J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  17. 17.
    J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)MathSciNetGoogle Scholar
  18. 18.
    Abdon Atangana, Dumitru Baleanu, J. Eng. Mech. 143, D4016005 (2017)CrossRefGoogle Scholar
  19. 19.
    Jordan Hristov, Therm. Sci. 20, 757 (2016)CrossRefGoogle Scholar
  20. 20.
    Emile Franc Doungmo Goufo, Math. Model. Anal. 21, 188 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  22. 22.
    Atangana Abdon, Baleanu Dumitru, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Atangana, N. Bildik, Math. Prob. Eng. 2013, 543026 (2013)Google Scholar
  25. 25.
    Abdon Atangana, Chaos, Solitons Fractals 114, 347 (2018)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Abdon Atangana, Emile Franc Doungmo Goufo, Acta Math. Appl. Sin. 34, 351 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Atangana, P. Vermeulen, Abstr. Appl. Anal. 2014, 381753 (2014)Google Scholar
  28. 28.
    Atangana Abdon, Kolade M. Owolabi, Math. Model. Nat. Phenom. 13, 3 (2018)CrossRefGoogle Scholar
  29. 29.
    Abdon Atangana, Physica A 505, 688 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Jose Francisco Gomez-Aguilar, Abdon Atangana, Fractal Fraction. 2, 10 (2018)CrossRefGoogle Scholar
  31. 31.
    Abdon Atangana, J.F. Gomez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  32. 32.
    Abdon Atangana, J.F. Gomez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    J.F. Gomez-Aguilar et al., Adv. Differ. Equ. 1, 68 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Coronel-Escamilla et al., Physica A 491, 406 (2018)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.F. Gomez-Aguilar, Numer. Methods Part. Differ. Equ. 34, 1716 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    J.F. Gómez-Aguilar et al., Math. Prob. Eng. 2016, 7845874 (2016)CrossRefGoogle Scholar
  37. 37.
    R.N. Pillai, Ann. Inst. Stat. Math. 42, 157 (1990)CrossRefGoogle Scholar
  38. 38.
    F. Mainardi, R. Gorenflo, E. Scalas, Vietnam J. Math. 32, 53 (2004)MathSciNetGoogle Scholar
  39. 39.
    R. Gorenflo, F. Mainardi, Anomalous Transport: Foundations and Applications, Ch 4: Continuous time random walk, in Mittag-Leffler Waiting Time and Fractional Diffusion: Mathematical Aspects, edited by R. Klages, G. Radons, I.M. Sololov (Wiley-VCH, Weinheim, Germany, 2008) pp. 93--127Google Scholar
  40. 40.
    R. Gorenflo, F. Mainardi, Arch. Mech. 50, 377 (1998)Google Scholar
  41. 41.
    Z. Hammouch, T. Mekkaoui, Complex Intell. Syst. 4, 251 (2018)CrossRefGoogle Scholar
  42. 42.
    T. Mekkaoui, Z. Hammouch, F. Belgacem, A. ElAbbassi, Fractional Dynamics (Degruyter, 2015)Google Scholar
  43. 43.
    Christos K. Volos, Circuit realization of a fractional-order chaotic jerk system, in IEEE 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2017 (IEEE, 2017)Google Scholar
  44. 44.
    M. Caputo, J. R. Astral. Soc. 13, 529 (1967)ADSCrossRefGoogle Scholar
  45. 45.
    I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, New York, 1999)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for groundwater Studies, Faculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.E3MI, Faculty of Sciences and TechinquesMoulay Ismail University of MeknesMeknesMorocco

Personalised recommendations