A class of higher-dimensional hyperchaotic maps
- 27 Downloads
- 1 Citations
Abstract.
Based on the hybrid modulation coupling (HMC) pattern, a class of higher-dimensional (HD) hyperchaotic maps is proposed using three one-dimensional (1D) seed maps. The seed maps are chaotic maps or the combination of chaotic maps and non-chaotic maps. Taking the HMC of iterative chaotic map with infinite collapse (ICMIC), Sine map and a linear map (ISL-HMC) as an example, the equilibrium points are mathematically analyzed. The dynamical performance of the 3D ISL-HMC map is evaluated by phase diagram, Lyapunov exponents (LEs), bifurcation diagram and chaos diagram. Furthermore, compared with existing chaotic maps, complexity and distribution characteristic are analyzed. As application of the ISL-HMC map, a pseudorandom number generator (PRNG) is designed and tested by NIST SP 800-22 and TestU01. Experimental results show that the ISL-HMC map has rich dynamical behaviors and good randomness. So this class of HD hyperchaotic maps is a potential model for cryptography and other applications.
References
- 1.M. Sciamanna, K.A. Shore, Nat. Photon. 9, 151 (2017)ADSCrossRefGoogle Scholar
- 2.J.A. Marusich, J.L. Wiley, T.W. Lefever, P.R. Patel, B.F. Thomas, Neuropharmacology 134, 73 (2018)CrossRefGoogle Scholar
- 3.Q. Jiang, J. Ma, X. Lu, Y. Tian, J. Med. Syst. 38, 1 (2014)CrossRefGoogle Scholar
- 4.S. Kim, Y. Kim, J. Lee, H.S. Kim, Adv. Meteorol. 2015, 1 (2015)Google Scholar
- 5.Z. Lin, S. Yu, J. Lü, S. Cai, G. Chen, IEEE T Circ. Syst. Vid. 25, 1203 (2015)CrossRefGoogle Scholar
- 6.Z. Lin, S. Yu, C. Li, J. Lü, Q. Wang, Int. J. Bifurcat. Chaos 26, 1650158 (2016)CrossRefGoogle Scholar
- 7.L. Liu, H. Song, Electron. Design Eng. 13, 123 (2014)Google Scholar
- 8.Z. Hua, Y. Zhou, C. Chen, Digital Signal Processing and Signal Processing Education Meeting (IEEE, 2013) pp. 118--123Google Scholar
- 9.G. Wang, F. Yuan, Acta. Phys. Sin. 62, 020506 (2013)Google Scholar
- 10.Y. Zhou, L. Bao, C. Chen, Signal Process. 97, 172 (2012)CrossRefGoogle Scholar
- 11.H. Natiq, N. Al-Saidi, M. Said, A. Kilicman, Eur. Phys. J. Plus 133, 6 (2018)CrossRefGoogle Scholar
- 12.C. Pak, L. Huang, Signal Process. 138, 129 (2017)CrossRefGoogle Scholar
- 13.J. Li, H. Liu, IET. Inform. Secur. 7, 265 (2013)ADSCrossRefGoogle Scholar
- 14.Y. Wu, J. Electron. Imaging 21, 1 (2012)Google Scholar
- 15.Z. Hua, Y. Zhou, Inform. Sci. 339, 237 (2018)CrossRefGoogle Scholar
- 16.Z. Hua, Y. Shuang, Y. Zhou, C. Li, Y. Wu, IEEE T. Cybernetics 48, 463 (2018)CrossRefGoogle Scholar
- 17.M. Yu, K. Sun, W. Liu, S. He, Chaos, Solitons Fractals 106, 107 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 18.W. Liu, K. Sun, S. He, Nonlinear Dyn. 89, 2521 (2017)CrossRefGoogle Scholar
- 19.Z. Hua, Y. Zhou, C. Pun, C. Chen, Inform. Sci. 297, 80 (2015)CrossRefGoogle Scholar
- 20.A. Alamodi, K. Sun, W. Ai, C. Chen, D. Peng, Chin. Phys. B 28, 020503 (2019)ADSCrossRefGoogle Scholar
- 21.J. Munkhammar, Fract. Calc. Appl. Anal. 16, 511 (2013)MathSciNetCrossRefGoogle Scholar
- 22.Z. Liu, T. Xia, Appl. Comput. Inform. 14, 177 (2017)CrossRefGoogle Scholar
- 23.Z. Liu, T. Xia, J. Wang, Chin. Phys. B 27, 030502 (2018)ADSCrossRefGoogle Scholar
- 24.D. He, C. He, L. Jiang, H. Zhu, G. Hu, Proc. Tencon 3, 95 (2000)Google Scholar
- 25.H. Natiq, S. Banerjee, S. He, M. Said, A. Kilicman, Chaos, Solitons Fractals 114, 506 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 26.H. Natiq, S. Banerjee, M. Ariffin, M. Said, Chaos 29, 011103 (2019)ADSMathSciNetCrossRefGoogle Scholar
- 27.S. He, K. Sun, H. Wang, Physica A 461, 812 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 28.S. Pincus, Chaos 5, 110 (1995)ADSCrossRefGoogle Scholar
- 29.S. Chang, Acta Phys. Sin. 62, 709 (2013)Google Scholar
- 30.K. Sun, S. He, L. Yin, L. Duo, Acta Phys. Sin. 61, 130507 (2012)Google Scholar
- 31.H. Hu, Y. Deng, L. Liu, Commun. Nonlinear Sci. 19, 1970 (2014)CrossRefGoogle Scholar
- 32.C. Chen, K. Sun, Y. Peng, A. Alamodi, Eur. Phys. J. Plus 134, 31 (2019)CrossRefGoogle Scholar