Advertisement

Effect of ferrite phase addition on the functional properties of (K0.5Na0.5)NbO3ceramics

  • R. J. S. Lima
  • P. BanerjeeEmail author
  • E. B. Araujo
  • A. FrancoJr.
Regular Article
  • 32 Downloads

Abstract.

Lead-free ceramics consist of ferroelectric K0.5Na0.5NbO3 (KNN) and spinel ferrimagnetic CoFe2O4 (CFO) phases were prepared by the conventional solid state reaction method. The constituent phase presence of multiferroic material was confirmed by X-ray diffraction techniques with Rietveld refinement methods. A systematic study of dielectric properties at room temperature with frequency revealed that the dispersion is in accordance with the Cole-Cole model with the presence of dc conductivity at lower frequencies. The main reason for this type of dispersion was related with the different heterogeneous conduction mechanism between the ferroelectric and ferrite phases in multiferroic structures. Complex impedance analysis re-established non-Debye type dielectric relaxation mechanism in the multiferroic. The effect of constituents phase variation on the electric and magnetic hysteresis behavior was also examined. The ferroelectric order diluted with the addition of ferrite content. The remnant magnetization (Mr) and saturation magnetization (Ms) values increased while the coercivity (Hc) values of the materialss decreased with the addition of ferrite content. We established that this material is a room temperature multiferroic and highlighted a possible way to modulate functional properties of this lead-free materials for application in microelectromechanical system (MEMS) technology.

References

  1. 1.
    G. Srinivasan, A.S. Tatarenko, M.I. Bichurin, Electron. Lett. 41, 596 (2005)CrossRefGoogle Scholar
  2. 2.
    Shuxiang Dong, Jie-Fang Li, Dwight Viehland, J. Cheng, L.E. Cross, Appl. Phys. Lett. 85, 3534 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Shuxiang Dong, Junyi Zhai, JieFang Li, D. Viehland, Appl. Phys. Lett. 88, 082907 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D.R. Ratkovski, P.R.T. Ribeiro, F.L.A. Machado, P. Banerjee, A. Franco, J. Magn. & Magn. Mater. 451, 620 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    P. Banerjee, A. Franco Jr, J. Mater. Sci. 28, 8562 (2017)Google Scholar
  6. 6.
    P. Banerjee, A. Franco, Mater. Lett. 184, 17 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Banerjee, A. Franco, J. Mater. Sci. 27, 6053 (2016)Google Scholar
  8. 8.
    Manfred Fiebig, Thomas Lottermoser, Dennis Meier, Morgan Trassin, Nat. Rev. Mater. 1, 16046 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Jia-Mian Hu, Long-Qing Chen, Ce-Wen Nan, Adv. Mater. 28, 15 (2016)CrossRefGoogle Scholar
  10. 10.
    Jing Ma, Jiamian Hu, Zheng Li, Ce-Wen Nan, Adv. Mater. 23, 1062 (2011)CrossRefGoogle Scholar
  11. 11.
    Ce-Wen Nan, M.I. Bichurin, Shuxiang Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 1 (2008)Google Scholar
  12. 12.
    Junyi Zhai, Zengping Xing, Shuxiang Dong, Jiefang Li, Dwight Viehland, J. Am. Ceram. Soc. 91, 351 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)Google Scholar
  14. 14.
    J.G. Wan, J.-M. Liu, H.L.W. Chand, C.L. Choy, G.H. Wang, C.W. Nan, J. Appl. Phys. 93, 9916 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J.G. Wan, X.W. Wang, Y.J. Wu, M. Zeng, Y. Wang, H. Jiang, W.Q. Zhou, G.H. Wang, J.-M. Liu, Appl. Phys. Lett. 86, 122501 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.-M. Liu, X.P. Jiang, C.W. Nan, J. Appl. Phys. 95, 8069 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Jian-guo Wan, Hao Zhang, Xiuwei Wang, Dengyu Pan, Jun-ming Liu, Guanghou Wang, Appl. Phys. Lett. 89, 122914 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    J.X. Zhang, J.Y. Dai, C.K. Chow, C.L. Sun, V.C. Lo, H.L.W. Chan, Appl. Phys. Lett. 92, 022901 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Shujun Zhang, Ru Xia, Thomas R. Shrout, Guozhong Zang, Jinfeng Wang, J. Appl. Phys. 100, 104108 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    A. Franco Jr., H.V.S. Pessoni, F.O. Neto, J. Alloys Compd. 680, 198 (2016)CrossRefGoogle Scholar
  21. 21.
    S.D. Bhame, P.A. Joy, Sensors Actuat. A 137, 256 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Franco, P. Banerjee, R.J.S. Lima, J. Mater. Sci. 29, 4357 (2018)Google Scholar
  23. 23.
    Elina Manova, Boris Kunev, Daniela Paneva, Ivan Mitov, Lachezar Petrov, Claude Estournès, Céline D’Orléan, Jean-Luc Rehspringer, Mohamedally Kurmoo, Chem. Mater. 16, 5689 (2004)CrossRefGoogle Scholar
  24. 24.
    A. Franco Jr., F.C. e Silva, Appl. Phys. Lett. 96, 172505 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)CrossRefGoogle Scholar
  26. 26.
    Brian H. Toby, Robert B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013)CrossRefGoogle Scholar
  27. 27.
    Maria Cristina Burla, Rocco Caliandro, Benedetta Carrozzini, Giovanni Luca Cascarano, Corrado Cuocci, Carmelo Giacovazzo, Mariarosaria Mallamo, Annamaria Mazzone, Giampiero Polidori, J. Appl. Crystallogr. 48, 306 (2015)CrossRefGoogle Scholar
  28. 28.
    T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonça, M.R. Nunes, F.M. Costa, Solid State Sci. 5, 383 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Koduri Ramam, Marta Lopez, J. Phys. D 39, 4466 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    S.Y. Tan, S.R. Shannigrahi, S.H. Tan, F.E.H. Tay, J. Appl. Phys. 103, 094105 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Jun Yi Zhai, Ning Cai, Li Liu, Yuan Hua Lin, Ce Wen Nan, Mater. Sci. Eng. B 99, 329 (2003)CrossRefGoogle Scholar
  32. 32.
    Chen Gao, Bo Hu, Xuefei Li, Chihui Liu, M. Murakami, K.-S. Chang, C.J. Long, M. Wuttig, I. Takeuchi, Appl. Phys. Lett. 87, 153505 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    G. Srinivasan, C.P. De Vreugd, V.M. Laletin, N. Paddubnaya, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Phys. Rev. B 71, 184423 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Gonzalez Abreu, A. Pelaiz Barranco, E.B. Araujo, A. Junior Franco, Appl. Phys. Lett. 94, 262903 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Junwu Nie, Guoyue Xu, Ying Yang, Chuanwei Cheng, Mater. Chem. Phys. 115, 400 (2009)CrossRefGoogle Scholar
  36. 36.
    E.J.W. Verwey, Nature 144, 327 (1939)ADSCrossRefGoogle Scholar
  37. 37.
    P. Banerjee, A. Franco Jr., Phys. Status Solidi A 214, 1700067 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    A. Franco, P. Banerjee, P.L. Romanholo, J. Alloys Compd. 764, 122 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Naveed-Ul-Haq, Vladimir V. Shvartsman, Soma Salamon, Heiko Wende, Harsh Trivedi, Arif Mumtaz, Doru C. Lupascu, Sci. Rep. 6, 32164 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    K.K. Patankar, S.A. Kanade, D.S. Padalkar, B.K. Chougule, Phys. Lett. A 361, 472 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unidade Acadêmica de FísicaUniversidade Federal de Campina GrandeParaíbaBrazil
  2. 2.Instituto de FísicaUniversidade Federal de GoiásGoiânia-GOBrazil
  3. 3.Department of PhysicsGandhi Institute of Technology and Management (GITAM) UniversityKarnatakaIndia
  4. 4.Departamento de Física e QuímicaUniversidade Estadual Paulista (UNESP)SolteiraBrazil
  5. 5.Instituto de FisicaUniversidade Federal de GoiasGoianiaBrazil

Personalised recommendations