Advertisement

Analysis of first integrals for some nonlinear differential equations via different approaches

  • Gülden Gün PolatEmail author
Regular Article
  • 15 Downloads

Abstract.

This paper begins with first integrals and Lagrangian forms of the Ermakov-Pinney equation. We analyze this equation with the methods which are known as Jacobi last multiplier (JLM) and partial Hamiltonian. The other part of the paper includes a class of the Painlevé-Gambier equations and describes the motion of a chain ball drawing with constant force in frictionless surface. The Painlevé-Gambier equation is investigated through the following methods: \( \lambda\) -symmetry, Prelle-Singer and partial Hamiltonian. Some of the aforementioned methods have relationships with Lie point symmetries. The first, JLM method, enables us to derive first integrals and Lagrangian forms of ordinary differential equations (ODEs) via Lie point symmetries. The second one is the \( \lambda\) -symmetry method, which is very useful in finding first integrals and integrating factors of ODEs. One way to obtain \( \lambda\) -symmetries is to use Lie point symmetries. Another method, introduced by Naz et al. in 2014 focuses on the partial Hamiltonian systems and is applicable to many problems in various fields, such as applied mathematics, mechanics and economics. Lastly the Prelle-Singer (PS) method has a relation between the \( \lambda\) -symmetry method and null forms, and integrating factors of ODEs can be derived with this connection.

References

  1. 1.
    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, 1993)Google Scholar
  2. 2.
    G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer-Verlag, New York, 1989)Google Scholar
  3. 3.
    M.C. Nucci, J. Nonlinear Math. Phys. 12, 284 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M.C. Nucci, Theor. Math. Phys. 160, 1014 (2009)CrossRefGoogle Scholar
  5. 5.
    M.C. Nucci, P.G.L. Leach, J. Math. Phys. 48, 123510 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M.C. Nucci, P.G.L. Leach, J. Nonlinear Math. Phys. 16, 431 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M.C. Nucci, K.M. Tamizhmani, Nuovo Cimento B 125, 255 (2010)Google Scholar
  8. 8.
    C. Muriel, J.L. Romero, IMA J. Appl. Math. 66, 111 (2001)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Muriel, J.L. Romero, J. Phys. A 42, 365207 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wen-Xiu Ma, Nonlinear Anal. 71, e1716 (2009)CrossRefGoogle Scholar
  11. 11.
    V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, J. Math. Phys. 12, 184 (2005)Google Scholar
  12. 12.
    V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Proc. R. Soc. London Ser. A 461, 2451 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    R. Mohanasubha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Proc. R. Soc. A 470, 20130656 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R. Naz, F.M. Mahomed, A. Chaudhry, Commun. Nonlinear Sci. Numer. Simul. 19, 3600 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Naz, F.M. Mahomed, A. Chaudhry, Nonlinear Dyn. 84, 1783 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Naz, Int. J. Non-Linear Mech. 86, 1 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    R. Naz, F.M. Mahomed, A. Chaudhry, Commun. Nonlinear Sci. Numer. Simul. 30, 299 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    K.S. Mahomed, R.J. Moitsheki, Int. J. Mod. Phys. B 30, 1640019 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    B.U. Haq, I. Naeem, Nonlinear Dyn. 95, 1747 (2019)CrossRefGoogle Scholar
  20. 20.
    R. Naz, I. Naeem, Z. Naturforsch. A 73, 323 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    V. Ermakov, Appl. Anal. Discr. Math. 2, 123 (2008)CrossRefGoogle Scholar
  22. 22.
    E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950)MathSciNetGoogle Scholar
  23. 23.
    M.C. Nucci, P.G.L. Leach, J. Nonlinear Math. Phys. 12, 305 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R.M. Morris, P.G.L. Leach, Appl. Anal. Discr. Math. 11, 62 (2017)CrossRefGoogle Scholar
  25. 25.
    Ö. Orhan, T. Özer, AIMS Discr. Contin. Dyn. Syst. Ser. S 11, 735 (2018)Google Scholar
  26. 26.
    E. Yaşar, M. Reis, J. Phys. A 43, 295202 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    E. Yaşar, Math. Methods Appl. Sci. 35, 684 (2012)MathSciNetGoogle Scholar
  28. 28.
    G. Gün Polat, T. Özer, Nonlinear Dyn. 85, 1571 (2016)CrossRefGoogle Scholar
  29. 29.
    G. Gün Polat, T. Özer, J. Comput. Nonlinear Dyn. 12, 041001 (2017)CrossRefGoogle Scholar
  30. 30.
    Wen-Xiu Ma, Y. Zhou, J. Differ. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    Wen-Xiu Ma, J. Li, C.M. Khalique, Complexity 2018, 9059858 (2018)Google Scholar
  32. 32.
    Wen-Xiu Ma, J. Appl. Anal. Comput. 264, 2633 (2018)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.İstanbul Technical University, Faculty of Science and Letters, Department of MathematicsİstanbulTurkey

Personalised recommendations