Advertisement

Quasi-exactly solvable extended trigonometric Pöschl-Teller potentials with position-dependent mass

  • C. QuesneEmail author
Regular Article
  • 15 Downloads

Abstract.

Infinite families of quasi-exactly solvable position-dependent mass Schrödinger equations with known ground and first excited states are constructed in a deformed supersymmetric background. The starting points consist in one- and two-parameter trigonometric Pöschl-Teller potentials endowed with a deformed shape invariance property and, therefore, exactly solvable. Some extensions of them are considered with the same position-dependent mass and dealt with by a generating function method. The latter enables to construct the first two superpotentials of a deformed supersymmetric hierarchy, as well as the first two partner potentials and the first two eigenstates of the first potential from some generating function W+(x) (and its accompanying function W-(x) . The generalized trigonometric Pöschl-Teller potentials so obtained are thought to have interesting applications in molecular and solid state physics.

References

  1. 1.
    G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)ADSCrossRefGoogle Scholar
  2. 2.
    S. Flügge, Practical Quantum Mechanics I (Springer-Verlag, Berlin, 1971)Google Scholar
  3. 3.
    J.-P. Antoine, J.-P. Gazeau, P. Monceau, J.R. Klauder, K.A. Penson, J. Math. Phys. 42, 2349 (2001)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    F.L. Scarf, Phys. Rev. 112, 1137 (1958)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Quesne, J. Phys. Conf. Ser. 380, 012016 (2012)CrossRefGoogle Scholar
  6. 6.
    L.E. Gendenshtein, JETP Lett. 38, 356 (1983)ADSGoogle Scholar
  7. 7.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Contreras-Astorga, D.J. Fernández C., J. Phys. A 41, 475303 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Quesne, J. Phys. A 41, 392001 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Odake, R. Sasaki, Phys. Lett. B 679, 414 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Odake, R. Sasaki, Phys. Lett. B 702, 164 (2011)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Gómez-Ullate, Y. Grandati, R. Milson, J. Math. Phys. 55, 043510 (2014)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Bagchi, Y. Grandati, C. Quesne, J. Math. Phys. 56, 062103 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Grandati, C. Quesne, SIGMA 11, 061 (2015)Google Scholar
  15. 15.
    D. Gómez-Ullate, N. Kamran, R. Milson, J. Math. Anal. Appl. 359, 352 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Calogero, G. Yi, J. Phys. A 45, 095206 (2012)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D.J. Fernández C., E. Salinas-Hernández, J. Phys. A 36, 2537 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, Les Ulis, 1988)Google Scholar
  19. 19.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Heterostructures (Academic, New York, 1997)Google Scholar
  20. 20.
    L. Serra, E. Lipparini, Europhys. Lett. 40, 667 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Chichester, 2016)Google Scholar
  22. 22.
    M. Barranco, M. Pi, S.M. Gatica, E.S. Hernández, J. Navarro, Phys. Rev. B 56, 8997 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    M.R. Geller, W. Kohn, Phys. Rev. Lett. 70, 3103 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    A. Puente, Ll. Serra, M. Casas, Z. Phys. D 31, 283 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, New York, 1980)Google Scholar
  27. 27.
    D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Rev. C 83, 044321 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    W. Willatzen, B. Lassen, J. Phys.: Condens. Matter 19, 136217 (2007)ADSGoogle Scholar
  29. 29.
    N. Chamel, Nucl. Phys. A 773, 263 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    C. Quesne, Ann. Phys. (N.Y.) 321, 1221 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    C. Quesne, V.M. Tkachuk, J. Phys. A 37, 4267 (2004)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    B. Bagchi, A. Banerjee, C. Quesne, V.M. Tkachuk, J. Phys. A 38, 2929 (2005)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Quesne, SIGMA 5, 046 (2009)Google Scholar
  34. 34.
    C. Quesne, Ann. Phys. (N.Y.) 399, 270 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    O. Voznyak, V.M. Tkachuk, J. Phys. Stud. 16, 1003 (2012) (in Ukrainian)MathSciNetGoogle Scholar
  36. 36.
    V.M. Tkachuk, Phys. Lett. A 245, 177 (1998)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    O. von Roos, Phys. Rev. B 27, 7547 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    O. Mustafa, S.H. Mazharimousavi, Int. J. Theor. Phys. 46, 1786 (2007)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physique Nucléaire Théorique et Physique MathématiqueUniversité Libre de Bruxelles, Campus de la Plaine CP229BrusselsBelgium

Personalised recommendations