Advertisement

Modeling and simulation results of a fractional dengue model

  • M. A. KhanEmail author
  • Arshad Khan
  • A. Elsonbaty
  • A. A. Elsadany
Regular Article
  • 46 Downloads

Abstract.

Dengue fever is a vector-borne disease and is still epidemic in most countries of the world by providing so many outbreaks. The present paper investigates the dengue dynamics for the real cases reported in Pakistan in the period 2003–2015. The model is formulated and the associated properties are presented. We show, for the given period, a basic reproduction, \( {R}_0 = 3.8\). The parameters are parameterized for model simulation by using the leaset square curve fitting in MATLAB. We use the Caputo derivative and formulate the fractional dengue model. The stability analysis for the fractional dengue model in both disease-free and endemic cases is presented. We show that, in the disease-free case, the fractional dengue model is locally and globally stable when \( {R}_0 < 1\). Then, we prove the model stability in the endemic case and present the results for \( {R}_0 > 1\) . We provide some graphical illustrations and show that the dengue model with fractional derivative is more useful than that of the integer order model.

References

  1. 1.
    G. Chowell, P. Diaz-Duenas, J.C. Miller, A. Alcazar-Velazco, J.M. Hyman, P.W. Fenimore, C. Castillo-Chavez, Math. Biosci. 208, 571 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chandra Shekhar, Chem. Biol. 14, 871 (2007)CrossRefGoogle Scholar
  3. 3.
    Samir Bhatt, Peter W. Gething, Oliver J. Brady, Jane P. Messina, Andrew W. Farlow, Catherine L. Moyes, John M. Drake, John S. Brownstein, Anne G. Hoen, Osman Sankoh et al., Nature 496, 504 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Oliver J. Brady, Peter W. Gething, Samir Bhatt, Jane P. Messina, John S. Brownstein, Anne G. Hoen, Catherine L. Moyes, Andrew W. Farlow, Thomas W. Scott, Simon I. Hay, PLOS Negl. Trop. Dis. 6, e1760 (2012)CrossRefGoogle Scholar
  5. 5.
    Thomas L. Bancroft, Austral. Med. Gaz. 25, 17 (1906)Google Scholar
  6. 6.
    Helena Sofia Rodrigues, M. Teresa, T. Monteiro, Delfim F.M. Torres, Math. Biosci. 247, 1 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Scott B. Halstead, World Health Stat. Q. 45, 292 (1992)Google Scholar
  8. 8.
    Gustavo P. Kouri, María G. Guzmán, José R. Bravo, Bull. Pan. Am. Health Organ. 20, 24 (1986)Google Scholar
  9. 9.
    World Health Organization (WHO), Dengue Vaccine Research: Immunization, Vaccines and Biologicals, https://www.who.int/immunization/research/development/dengue_vaccines/en/ (2017)
  10. 10.
    Joseph E. Blaney, Jennifer M. Matro, Brian R. Murphy, Stephen S. Whitehead, J. Virol. 79, 5516 (2005)CrossRefGoogle Scholar
  11. 11.
    Joseph E. Blaney, Neeraj S. Sathe, Christopher T. Hanson, Cai Yen Firestone, Brian R. Murphy, Stephen S. Whitehead, Virol. J. 4, 23 (2007)CrossRefGoogle Scholar
  12. 12.
    Matthieu Lesnoff, Géraud Laval, Pascal Bonnet, Karine Chalvet-Monfray, Renaud Lancelot, Francois Thiaucourt, Prev. Vet. Med. 62, 101 (2004)CrossRefGoogle Scholar
  13. 13.
    Eunha Shim, Am. J. Trop. Med. Hyg. 95, 1137 (2016)CrossRefGoogle Scholar
  14. 14.
    F.B. Agusto, M.A. Khan, Math. Biosci. 305, 102 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stefan G. Samko, Anatoly A. Kilbas, Oleg I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (CRC Press, 1993)Google Scholar
  16. 16.
    Michele Caputo, Mauro Fabrizio, Progr. Fract. Differ. Appl. 1, 1 (2015)Google Scholar
  17. 17.
    Abdon Atangana, Dumitru Baleanu, arXiv:1602.03408 (2016)Google Scholar
  18. 18.
    Abdon Atangana, Ilknur Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Eur. Phys. J. Plus 133, 237 (2018)CrossRefGoogle Scholar
  20. 20.
    Abdon Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  21. 21.
    Zhenhai Liu, Peifen Lu, Adv. Differ. Equ. 2014, 298 (2014)CrossRefGoogle Scholar
  22. 22.
    Emile Franc Doungmo Goufo, J. Theor. Biol. 403, 178 (2016)CrossRefGoogle Scholar
  23. 23.
    Muhammad Altaf Khan, Saif Ullah, Muhammad Farhan, AIMS Math. 4, 134 (2019)CrossRefGoogle Scholar
  24. 24.
    Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Chaos, Solitons Fractals 116, 63 (2018)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Yépez-Martínez, J.F. Gómez-Aguilar, J. Comput. Appl. Math. 346, 247 (2019)MathSciNetCrossRefGoogle Scholar
  26. 26.
    José Francisco Gómez-Aguilar, Baleanu Dumitru, Z. Naturforsch. A 69, 539 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Gómez-Aguilar, H. Yépez-Martínez, R.F. Escobar-Jiménez, Appl. Math. Model. 40, 9079 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J.F. Gómez-Aguilar, Abdon Atangana, Eur. Phys. J. Plus 132, 13 (2017)CrossRefGoogle Scholar
  29. 29.
    Abdon Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 102, 285 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    B. Cuahutenango-Barro, M.A. Taneco-Hernández, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 115, 283 (2018)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Yépez-Martínez, F. Gómez-Aguilar, I.O. Sosa, J.M. Reyes, J. Torres-Jiménez, Rev. Mex. Fís. 62, 310 (2016)Google Scholar
  32. 32.
    Abdon Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Sania Qureshi, Abdullahi Yusuf, Eur. Phys. J. Plus 134, 171 (2019)CrossRefGoogle Scholar
  34. 34.
    Sania Qureshi, Abdon Atangana, Physica A 526, 121 (2019)Google Scholar
  35. 35.
    Abdon Atangana, Sania Qureshi, Chaos, Solitons Fractals 123, 320 (2019)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Sania Qureshi, Abdullahi Yusuf, Chaos, Solitons Fractals 122, 111 (2019)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Igor Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of Their Applications, Vol. 198 (Elsevier, 1998)Google Scholar
  38. 38.
    Hadi Delavari, Dumitru Baleanu, Jalil Sadati, Nonlinear Dyn. 67, 2433 (2012)CrossRefGoogle Scholar
  39. 39.
    Cruz Vargas-De-León, Commun. Nonlinear Sci. Numer. Simul. 24, 75 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Zaid M. Odibat, Nabil T. Shawagfeh, Appl. Math. Comput. 186, 286 (2007)MathSciNetGoogle Scholar
  41. 41.
    Wei Lin, J. Math. Anal. Appl. 332, 709 (2007)MathSciNetCrossRefGoogle Scholar
  42. 42.
    H.A. Antosiewicz, Studies in Ordinary Differential Equations, Vol. 14 (Mathematical Association of America, 1977)Google Scholar
  43. 43.
    Pauline Van den Driessche, James Watmough, Math. Biosci. 180, 29 (2002)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ana R.M. Carvalho, Carla M.A. Pinto, Dumitru Baleanu, Adv. Differ. Equ. 2018, 2 (2018)CrossRefGoogle Scholar
  45. 45.
    Mohammad Saleh Tavazoei, Mohammad Haeri, Physica D 237, 2628 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Muhammad Sabir, Yousaf Ali, Noor Muhammad, J. Pakistan Med. Assoc. 68, 1383 (2018)Google Scholar
  47. 47.
    Who Health Organization (WHO), WHO Country Cooperation Strategies, https://apps.who.int/iris/bitstream/handle/10665/136607/ccsbrief_pak_en.pdf?sequence=1
  48. 48.
    Carrie A. Manore, Kyle S. Hickmann, Sen Xu, Helen J. Wearing, James M. Hyman, J. Theor. Biol. 356, 174 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCity University of Science and Information TechnologyPeshawarPakistan
  2. 2.College of Sciences and Humanities Studies Al-Kharj, Mathematics DepartmentPrince Sattam Bin Abdulaziz UniversityAl-KharjSaudi Arabia
  3. 3.Department of Engineering Mathematics and Physics, Faculty of EngineeringMansoura UniversityMansouraEgypt
  4. 4.Department of Basic Science, Faculty of Computers and InformaticsSuez Canal UniversityIsmailiaEgypt

Personalised recommendations