Experimental investigation of the spherical Couette flow using electrodiffusion technique
Abstract.
In this paper, we present an experimental study of the occurrence of different flow modes between two coaxial rotating spheres. The electrodiffusion (ED) method and the visualization technique were used to determine the various flow regimes for an aspect ratio \( \Gamma=H/d\) ranging from 18 to 21, and for different values of the Taylor number Ta . The dimensionless gap has width \( \beta=0.107\) . The inner sphere rotates while the outer one is at rest. The visualization allowed to identify several bifurcation paths during the laminar-turbulent transition. Furthermore, the ED method permitted the measurement of the coefficient of friction in the inner wall of the outer sphere. The flow is analyzed by varying the iso-correlation and the phase space obtained by the ED method.
References
- 1.Li. Yuan, Phys. Fluids 24, 124104 (2012)ADSCrossRefGoogle Scholar
- 2.J. Wicht, J. Fluid Mech. 738, 545 (2014)MathSciNetCrossRefGoogle Scholar
- 3.Z. Tigrine, F. Mokhtari, A. Bouabdallah, M. Mahloul, Acta Mech. 225, 1 (2014)MathSciNetCrossRefGoogle Scholar
- 4.V.C. Loukopoulos, J. Comput. Methods Sci. Eng. 15, 4 (2015)MathSciNetGoogle Scholar
- 5.F. Feudel, L.S. Tuckerman, M. Gellert, N. Seehafer, Phy. Rev. E 92, 053015 (2015)ADSCrossRefGoogle Scholar
- 6.A. Lalaoua, A. Bouabdallah, ASME J. Fluids Eng. 138, 111201 (2016)CrossRefGoogle Scholar
- 7.M. Mahloul, A. Mahamdia, M. Kristiawan, Eur. J. Mech. B/Fluids 59, 1 (2016)ADSCrossRefGoogle Scholar
- 8.M. Mahloul, A. Mahamdia, M. Kristiawan, J. Appl. Fluid Mech. 9, 1 (2016)CrossRefGoogle Scholar
- 9.S. Abbas, L. Yuan, A. Shah, J. Braz. Soc. Mech. Sci. Eng. 40, 154 (2018)CrossRefGoogle Scholar
- 10.S. Abbas, L. Yuan, A. Shah, Fluid Dyn. Res. 50, 025507 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 11.G.l. Taylor, Philos. Trans. R. Soc. London A 223, 289 (1923)ADSCrossRefGoogle Scholar
- 12.M. Wimmer, Prog. Aerospace Sci. 25, 43 (1988)ADSCrossRefGoogle Scholar
- 13.C. Egbers, H.J. Rath, Acta Mech. 111, 125 (1995)CrossRefGoogle Scholar
- 14.K. Nakabayashi, W. Sha, Vortical Structures and Velocity Fluctuations of Spiral and Wavy Vortices in the Spherical Couette Flow (Springer-Verlag, Berlin, Heidelberg, 2000)Google Scholar
- 15.K. Nakabayashi, W. Sha, Y. Tsuchida, J. Fluid Mech. 534, 327 (2005)ADSCrossRefGoogle Scholar
- 16.S. Abbas, L. Yuan, A. Shah, J. Braz. Soc. Mech. Sci. Eng. 41, 49 (2019)CrossRefGoogle Scholar
- 17.T.J. Hanratty, J.A. Campbell, Measurement of Wall Shear Stress, in Fluid Mechanics Measurements, edited by R. Goldstein (Hemisphere Publishing Corporation, Washington, 1983) pp. 559--615Google Scholar
- 18.V. Sobolik, Collect. Czech. Chem. Comm. 64, 7 (1999)CrossRefGoogle Scholar
- 19.A. Mahamdia, A. Dhaoui, A. Bouabdallah, J. Phys. Conf. Ser. 137, 012008 (2008)CrossRefGoogle Scholar
- 20.A. Mahamdia, A. Bouabdallah, S.E. Skali, C. R. Mec. 331, 3 (2003)CrossRefGoogle Scholar
- 21.F. Wendt, Ing. Arch. 4, 6 (1933)CrossRefGoogle Scholar
- 22.A. Bouabdallah, G. Cognet, in Laminar-Turbulent Transition, edited by R. Eppler, H. Fasel (Springer-Verlag, Berlin, 1980)Google Scholar
- 23.M.N. Noui-Mehidi, N. Ohmura, K. Kataoka, J. Fluid Struct. 20, 3 (2005)CrossRefGoogle Scholar