Advertisement

Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: Sensitivity analysis and optimization

  • Ahmad Hajatzadeh Pordanjani
  • Seyed Masoud Vahedi
  • Saeed Aghakhani
  • Masoud Afrand
  • Hakan F. ÖztopEmail author
  • Nidal Abu-Hamdeh
Regular Article

Abstract.

In this paper, a numerical study has been examined on the effect of the presence of a magnetic field on the rate of convective heat transfer and entropy generation of a hybrid nanofluid (water/Al2O3-CuO (50/50)) in a square diagonal cavity. The horizontal walls of the insulating cavity and fixed temperature source are set on the left and right vertical wall with cold temperature. The governing equations are solved by finite volume method using the SIMPLE algorithm. In this paper, the effect of the Richardson number, Hartman number, thermal source length on hybrid entropy generation and convective heat transfer rate has been examined. Using the Response Surface Methodology (RSM) method, a polynomial equation is obtained between the three parameters given for the Nusselt number, total entropy generation and Bejan number. Then the sensitivity of responses to factors is checked. Finally, depending on the importance of each of the responses, we use the optimal points where simultaneously the highest Nu number, the lowest entropy generation, and Bejan number occur. The results show that with increasing Richardson number, heat transfer rate is reduced, and this reduction is more pronounced in smaller Hartmann number. Also, total entropy generation increased with increasing Richardson number, but Bejan number reduced. With increasing the intensity of the magnetic field and reducing the length of the thermal source, the heat transfer rate also reduces. However, with increasing the intensity of the magnetic field, the total entropy generation and Bejan number increase. Also, with increasing the length of the thermal source, the total entropy generation and Bejan number increase.

References

  1. 1.
    R. Iwatsu, J.M. Hyun, K. Kuwahara, Int. J. Heat Mass Transf. 36, 1601 (1993)CrossRefGoogle Scholar
  2. 2.
    H.F. Oztop, I. Dagtekin, Int. J. Heat Mass Transf. 47, 1761 (2004)CrossRefGoogle Scholar
  3. 3.
    M.K. Moallemi, K.S. Jang, Int. J. Heat Mass Transf. 35, 1881 (1992)CrossRefGoogle Scholar
  4. 4.
    M.A.R. Sharif, Appl. Therm. Eng. 27, 1036 (2007)CrossRefGoogle Scholar
  5. 5.
    H.F. Oztop, K. Al-Salem, Renew. Sustain. Energy Rev. 16, 911 (2012)CrossRefGoogle Scholar
  6. 6.
    A.S. Kherbeet, H.A. Mohammed, K.M. Munisamy, B.H. Salman, Int. J. Heat Mass Transf. 68, 554 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Yousaf, S. Usman, Int. J. Heat Mass Transf. 90, 180 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, C. Lei, J.C. Patterson, Int. J. Heat Mass Transf. 72, 23 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Ostrach, J. Heat Transf. 110, 1175 (1988)CrossRefGoogle Scholar
  10. 10.
    S. Aminossadati, B. Ghasemi, Eur. J. Mech. B Fluids 28, 630 (2009)CrossRefADSGoogle Scholar
  11. 11.
    G.R. Kefayati, S. Hosseinizadeh, M. Gorji, H. Sajjadi, Int. Commun. Heat Mass Transf. 38, 798 (2011)CrossRefGoogle Scholar
  12. 12.
    A.H. Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, S. Wongwises, Energy Convers. Manag. 198, 111886 (2019)CrossRefGoogle Scholar
  13. 13.
    F.-H. Lai, Y.-T. Yang, Int. J. Therm. Sci. 50, 1930 (2011)CrossRefGoogle Scholar
  14. 14.
    K.C. Lin, A. Violi, Int. J. Heat Fluid Flow 31, 236 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Hu, Y. He, S. Wang, Q. Wang, H.I. Schlaberg, J. Heat Transf. 136, 022502 (2014)CrossRefGoogle Scholar
  16. 16.
    W. Zhou, Y. Yan, J. Xu, Int. Commun. Heat Mass Transf. 55, 113 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Hu, Y. He, C. Qi, B. Jiang, H.I. Schlaberg, Int. J. Heat Mass Transf. 78, 380 (2014)CrossRefGoogle Scholar
  18. 18.
    A.K. Santra, S. Sen, N. Chakraborty, Int. J. Therm. Sci. 47, 1113 (2008)CrossRefGoogle Scholar
  19. 19.
    A.H. Pordanjani, S. Aghakhani, A. Karimipour, M. Afrand, M. Goodarzi, J. Therm. Anal. Calorim. 137, 9977 (2019)Google Scholar
  20. 20.
    S. Rashidi, O. Mahian, E.M. Languri, J. Therm. Anal. Calorim. 131, 2027 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Sarkar, Renew. Sustain. Energy Rev. 15, 3271 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Hemmat Esfe, F. Ghadak, A. Haghiri, S.S. Mir-Talebi, Aerosp. Mech. J. 8, 69 (2012)Google Scholar
  24. 24.
    M. Kalteh, K. Javaherdeh, T. Azarbarzin, Powder Technol. 253, 780 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Shahi, A.H. Mahmoudi, F. Talebi, Int. Commun. Heat Mass Transf. 37, 201 (2010)CrossRefGoogle Scholar
  26. 26.
    Mojumder Satyajit, Saha Sourav, Saha Sumon, M.A.H. Mamun, J. Hydrodyn. 27, 782 (2015)CrossRefADSGoogle Scholar
  27. 27.
    M. Bahiraei, M. Hangi, J. Magn. Magn. Mater. 374, 125 (2015)CrossRefADSGoogle Scholar
  28. 28.
    I. Nkurikiyimfura, Y. Wang, Z. Pan, Renew. Sustain. Energy Rev. 21, 548 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Odenbach, Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009)Google Scholar
  30. 30.
    A.H. Pordanjani, S. Aghakhani, A.A. Alnaqi, M. Afrand, Int. J. Mech. Sci. 152, 99 (2019)CrossRefGoogle Scholar
  31. 31.
    F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)CrossRefGoogle Scholar
  32. 32.
    A.H. Pordanjani, A. Jahanbakhshi, A. Ahmadi Nadooshan, M. Afrand, Int. J. Heat Mass Transf. 121, 565 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Sheikholeslami, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 43 (2016)CrossRefGoogle Scholar
  34. 34.
    H.M. Elshehabey, S.E. Ahmed, Int. J. Heat Mass Transf. 88, 181 (2015)CrossRefGoogle Scholar
  35. 35.
    G.R. Kefayati, M. Gorji-Bandpy, H. Sajjadi, D.D. Ganji, Sci. Iran. 19, 1053 (2012)CrossRefGoogle Scholar
  36. 36.
    H.F. Oztop, K. Al-Salem, I. Pop, Int. J. Heat Mass Transf. 54, 3494 (2011)CrossRefGoogle Scholar
  37. 37.
    F. Selimefendigil, H.F. Öztop, Int. J. Heat Mass Transf. 78, 741 (2014)CrossRefGoogle Scholar
  38. 38.
    F. Talebi, A.H. Mahmoudi, M. Shahi, Int. Commun. Heat Mass Transf. 37, 79 (2010)CrossRefGoogle Scholar
  39. 39.
    M.M. Rahman, R. Saidur, N.A. Rahim, Int. J. Heat Mass Transf. 54, 3201 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach, in Sea, Vol. 1000 (2002) pp. 8862Google Scholar
  41. 41.
    A. Bejan, Energy 5, 720 (1980)CrossRefADSGoogle Scholar
  42. 42.
    H.F. Oztop, K. Al-Salem, Renew. Sustain. Energy Rev. 16, 911 (2012)CrossRefGoogle Scholar
  43. 43.
    M. Shahi, A.H. Mahmoudi, A.H. Raouf, Int. Commun. Heat Mass Transf. 38, 972 (2011)CrossRefGoogle Scholar
  44. 44.
    R.K. Nayak, S. Bhattacharyya, I. Pop, Int. J. Heat Mass Transf. 102, 596 (2016)CrossRefGoogle Scholar
  45. 45.
    Cha’o-Kuang Chen, Bo-Shiuan Chen, Chin-Chia Liu, Int. J. Heat Mass Transf. 79, 750 (2014)CrossRefGoogle Scholar
  46. 46.
    F. Selimefendigil, H.F. Oztop, A.J. Chamkha, J. Magn. Magn. Mater. 406, 266 (2016)CrossRefADSGoogle Scholar
  47. 47.
    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, 1881)Google Scholar
  48. 48.
    H. Brinkman, J. Chem. Phys. 20, 571 (1952)CrossRefADSGoogle Scholar
  49. 49.
    H.R. Ashorynejad, A. Shahriari, Results Phys. 9, 440 (2018)CrossRefADSGoogle Scholar
  50. 50.
    W.-S. Han, S.-H. Rhi, Therm. Sci. 15, 195 (2011)CrossRefGoogle Scholar
  51. 51.
    D. Kamble, P. Gadhave, A. Ma, Int. J. Eng. Trends Technol. 17, 1 (2014)CrossRefGoogle Scholar
  52. 52.
    R. Ramachandran, K. Ganesan, M. Rajkumar, L. Asirvatham, S. Wongwises, Int. Commun. Heat Mass Transf. 76, 294 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Senthilraja, K. Vijayakumar, R. Gangadevi, Dig. J. Nanomater. Biostruct. 10, 1449 (2015)Google Scholar
  54. 54.
    M.S. Tahat, A.C. Benim, Defect Diffus. Forum 374, 148 (2017)CrossRefGoogle Scholar
  55. 55.
    S. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, 1980)Google Scholar
  56. 56.
    E. Abedini, T. Zarei, M. Afrand, S. Wongwises, J. Mol. Liq. 231, 11 (2017)CrossRefGoogle Scholar
  57. 57.
    M. Afrand, Int. J. Therm. Sci. 118, 12 (2017)CrossRefGoogle Scholar
  58. 58.
    M. Afrand, S. Farahat, A.H. Nezhad, G. Ali Sheikhzadeh, F. Sarhaddi, Int. J. Appl. Electromagn. Mech. 46, 809 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transf. Res. 45, 749 (2014)CrossRefGoogle Scholar
  60. 60.
    M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transf. Res. 45, 749 (2014)CrossRefGoogle Scholar
  61. 61.
    M. Afrand, N. Sina, H. Teimouri, A. Mazaheri, M.R. Safaei, M.H. Esfe, J. Kamali, D. Toghraie, Int. J. Appl. Mech. 7, 1550052 (2015)CrossRefGoogle Scholar
  62. 62.
    A.J. Ahmad Hajatzadeh Pordanjani, Afshin Ahmadi Nadooshan, Masoud Afrand, Int. J. Heat Mass Transf. 121, 565 (2018)CrossRefGoogle Scholar
  63. 63.
    M.A. Ali Karimi, Energy Convers. Manag. 164, 615 (2018)CrossRefGoogle Scholar
  64. 64.
    H. Teimouri, G.A. Sheikhzadeh, M. Afrand, M.M. Fakhari, J. Mol. Liq. 227, 114 (2017)CrossRefGoogle Scholar
  65. 65.
    E. Abu-Nada, A.J. Chamkha, Eur. J. Mech. B Fluids 29, 472 (2012)CrossRefGoogle Scholar
  66. 66.
    M.A. Waheed, Int. J. Heat Mass Transf. 52, 5055 (2009)CrossRefGoogle Scholar
  67. 67.
    R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transf. 50, 2002 (2007)CrossRefGoogle Scholar
  68. 68.
    M.H. Esfe, M. Akbari, A. Karimipour, Masoud Afrand, O. Mahian, S. Wongwises, Int. J. Heat Mass Transf. 85, 656 (2015)CrossRefGoogle Scholar
  69. 69.
    S. Rashidi, M. Bovand, J.A. Esfahani, Desalination 395, 79 (2016)CrossRefGoogle Scholar
  70. 70.
    S. Rashidi, M. Bovand, J.A. Esfahani, Energy 88, 385 (2015)CrossRefGoogle Scholar
  71. 71.
    S. Vahedi, A.Z. Ghadi, M. Valipour, J. Mech. 34, 695 (2018)CrossRefGoogle Scholar
  72. 72.
    A.H. Pordanjani, S.M. Vahedi, F. Rikhtegar, S. Wongwises, J. Therm. Anal. Calorim. 135, 1031 (2019)CrossRefGoogle Scholar
  73. 73.
    S.M. Vahedi, A.H. Pordanjani, A. Raisi, A.J. Chamkha, Eur. Phys. J. Plus 134, 124 (2019)CrossRefGoogle Scholar
  74. 74.
    S.M. Vahedi, A.H. Pordanjani, S. Wongwises, M. Afrand, J. Therm. Anal. Calorim.  https://doi.org/10.1007/s10973-019-08224-6
  75. 75.
    M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmad Hajatzadeh Pordanjani
    • 1
  • Seyed Masoud Vahedi
    • 2
    • 3
  • Saeed Aghakhani
    • 4
  • Masoud Afrand
    • 5
    • 6
  • Hakan F. Öztop
    • 7
    • 8
    Email author
  • Nidal Abu-Hamdeh
    • 8
  1. 1.Department of Mechanical EngineeringShahrekord UniversityShahrekordIran
  2. 2.Department of Mechanical EngineeringSemnan UniversitySemnanIran
  3. 3.Gas refining technology groupGas research division, research institute of petroleum industry (RIPI)TehranIran
  4. 4.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  5. 5.Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  6. 6.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Department of Mechanical Engineering, Technology FacultyFırat UniversityElazığTurkey
  8. 8.Department of Mechanical EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations