Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: Sensitivity analysis and optimization
- 29 Downloads
- 2 Citations
Abstract.
In this paper, a numerical study has been examined on the effect of the presence of a magnetic field on the rate of convective heat transfer and entropy generation of a hybrid nanofluid (water/Al2O3-CuO (50/50)) in a square diagonal cavity. The horizontal walls of the insulating cavity and fixed temperature source are set on the left and right vertical wall with cold temperature. The governing equations are solved by finite volume method using the SIMPLE algorithm. In this paper, the effect of the Richardson number, Hartman number, thermal source length on hybrid entropy generation and convective heat transfer rate has been examined. Using the Response Surface Methodology (RSM) method, a polynomial equation is obtained between the three parameters given for the Nusselt number, total entropy generation and Bejan number. Then the sensitivity of responses to factors is checked. Finally, depending on the importance of each of the responses, we use the optimal points where simultaneously the highest Nu number, the lowest entropy generation, and Bejan number occur. The results show that with increasing Richardson number, heat transfer rate is reduced, and this reduction is more pronounced in smaller Hartmann number. Also, total entropy generation increased with increasing Richardson number, but Bejan number reduced. With increasing the intensity of the magnetic field and reducing the length of the thermal source, the heat transfer rate also reduces. However, with increasing the intensity of the magnetic field, the total entropy generation and Bejan number increase. Also, with increasing the length of the thermal source, the total entropy generation and Bejan number increase.
References
- 1.R. Iwatsu, J.M. Hyun, K. Kuwahara, Int. J. Heat Mass Transf. 36, 1601 (1993)CrossRefGoogle Scholar
- 2.H.F. Oztop, I. Dagtekin, Int. J. Heat Mass Transf. 47, 1761 (2004)CrossRefGoogle Scholar
- 3.M.K. Moallemi, K.S. Jang, Int. J. Heat Mass Transf. 35, 1881 (1992)CrossRefGoogle Scholar
- 4.M.A.R. Sharif, Appl. Therm. Eng. 27, 1036 (2007)CrossRefGoogle Scholar
- 5.H.F. Oztop, K. Al-Salem, Renew. Sustain. Energy Rev. 16, 911 (2012)CrossRefGoogle Scholar
- 6.A.S. Kherbeet, H.A. Mohammed, K.M. Munisamy, B.H. Salman, Int. J. Heat Mass Transf. 68, 554 (2014)CrossRefGoogle Scholar
- 7.M. Yousaf, S. Usman, Int. J. Heat Mass Transf. 90, 180 (2015)CrossRefGoogle Scholar
- 8.Y. Liu, C. Lei, J.C. Patterson, Int. J. Heat Mass Transf. 72, 23 (2014)CrossRefGoogle Scholar
- 9.S. Ostrach, J. Heat Transf. 110, 1175 (1988)CrossRefGoogle Scholar
- 10.S. Aminossadati, B. Ghasemi, Eur. J. Mech. B Fluids 28, 630 (2009)CrossRefADSGoogle Scholar
- 11.G.R. Kefayati, S. Hosseinizadeh, M. Gorji, H. Sajjadi, Int. Commun. Heat Mass Transf. 38, 798 (2011)CrossRefGoogle Scholar
- 12.A.H. Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, S. Wongwises, Energy Convers. Manag. 198, 111886 (2019)CrossRefGoogle Scholar
- 13.F.-H. Lai, Y.-T. Yang, Int. J. Therm. Sci. 50, 1930 (2011)CrossRefGoogle Scholar
- 14.K.C. Lin, A. Violi, Int. J. Heat Fluid Flow 31, 236 (2010)CrossRefGoogle Scholar
- 15.Y. Hu, Y. He, S. Wang, Q. Wang, H.I. Schlaberg, J. Heat Transf. 136, 022502 (2014)CrossRefGoogle Scholar
- 16.W. Zhou, Y. Yan, J. Xu, Int. Commun. Heat Mass Transf. 55, 113 (2014)CrossRefGoogle Scholar
- 17.Y. Hu, Y. He, C. Qi, B. Jiang, H.I. Schlaberg, Int. J. Heat Mass Transf. 78, 380 (2014)CrossRefGoogle Scholar
- 18.A.K. Santra, S. Sen, N. Chakraborty, Int. J. Therm. Sci. 47, 1113 (2008)CrossRefGoogle Scholar
- 19.A.H. Pordanjani, S. Aghakhani, A. Karimipour, M. Afrand, M. Goodarzi, J. Therm. Anal. Calorim. 137, 9977 (2019)Google Scholar
- 20.S. Rashidi, O. Mahian, E.M. Languri, J. Therm. Anal. Calorim. 131, 2027 (2018)CrossRefGoogle Scholar
- 21.J. Sarkar, Renew. Sustain. Energy Rev. 15, 3271 (2011)CrossRefGoogle Scholar
- 22.S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)CrossRefGoogle Scholar
- 23.M. Hemmat Esfe, F. Ghadak, A. Haghiri, S.S. Mir-Talebi, Aerosp. Mech. J. 8, 69 (2012)Google Scholar
- 24.M. Kalteh, K. Javaherdeh, T. Azarbarzin, Powder Technol. 253, 780 (2014)CrossRefGoogle Scholar
- 25.M. Shahi, A.H. Mahmoudi, F. Talebi, Int. Commun. Heat Mass Transf. 37, 201 (2010)CrossRefGoogle Scholar
- 26.Mojumder Satyajit, Saha Sourav, Saha Sumon, M.A.H. Mamun, J. Hydrodyn. 27, 782 (2015)CrossRefADSGoogle Scholar
- 27.M. Bahiraei, M. Hangi, J. Magn. Magn. Mater. 374, 125 (2015)CrossRefADSGoogle Scholar
- 28.I. Nkurikiyimfura, Y. Wang, Z. Pan, Renew. Sustain. Energy Rev. 21, 548 (2013)CrossRefGoogle Scholar
- 29.S. Odenbach, Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009)Google Scholar
- 30.A.H. Pordanjani, S. Aghakhani, A.A. Alnaqi, M. Afrand, Int. J. Mech. Sci. 152, 99 (2019)CrossRefGoogle Scholar
- 31.F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)CrossRefGoogle Scholar
- 32.A.H. Pordanjani, A. Jahanbakhshi, A. Ahmadi Nadooshan, M. Afrand, Int. J. Heat Mass Transf. 121, 565 (2018)CrossRefGoogle Scholar
- 33.M. Sheikholeslami, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 43 (2016)CrossRefGoogle Scholar
- 34.H.M. Elshehabey, S.E. Ahmed, Int. J. Heat Mass Transf. 88, 181 (2015)CrossRefGoogle Scholar
- 35.G.R. Kefayati, M. Gorji-Bandpy, H. Sajjadi, D.D. Ganji, Sci. Iran. 19, 1053 (2012)CrossRefGoogle Scholar
- 36.H.F. Oztop, K. Al-Salem, I. Pop, Int. J. Heat Mass Transf. 54, 3494 (2011)CrossRefGoogle Scholar
- 37.F. Selimefendigil, H.F. Öztop, Int. J. Heat Mass Transf. 78, 741 (2014)CrossRefGoogle Scholar
- 38.F. Talebi, A.H. Mahmoudi, M. Shahi, Int. Commun. Heat Mass Transf. 37, 79 (2010)CrossRefGoogle Scholar
- 39.M.M. Rahman, R. Saidur, N.A. Rahim, Int. J. Heat Mass Transf. 54, 3201 (2011)CrossRefGoogle Scholar
- 40.Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach, in Sea, Vol. 1000 (2002) pp. 8862Google Scholar
- 41.A. Bejan, Energy 5, 720 (1980)CrossRefADSGoogle Scholar
- 42.H.F. Oztop, K. Al-Salem, Renew. Sustain. Energy Rev. 16, 911 (2012)CrossRefGoogle Scholar
- 43.M. Shahi, A.H. Mahmoudi, A.H. Raouf, Int. Commun. Heat Mass Transf. 38, 972 (2011)CrossRefGoogle Scholar
- 44.R.K. Nayak, S. Bhattacharyya, I. Pop, Int. J. Heat Mass Transf. 102, 596 (2016)CrossRefGoogle Scholar
- 45.Cha’o-Kuang Chen, Bo-Shiuan Chen, Chin-Chia Liu, Int. J. Heat Mass Transf. 79, 750 (2014)CrossRefGoogle Scholar
- 46.F. Selimefendigil, H.F. Oztop, A.J. Chamkha, J. Magn. Magn. Mater. 406, 266 (2016)CrossRefADSGoogle Scholar
- 47.J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, 1881)Google Scholar
- 48.H. Brinkman, J. Chem. Phys. 20, 571 (1952)CrossRefADSGoogle Scholar
- 49.H.R. Ashorynejad, A. Shahriari, Results Phys. 9, 440 (2018)CrossRefADSGoogle Scholar
- 50.W.-S. Han, S.-H. Rhi, Therm. Sci. 15, 195 (2011)CrossRefGoogle Scholar
- 51.D. Kamble, P. Gadhave, A. Ma, Int. J. Eng. Trends Technol. 17, 1 (2014)CrossRefGoogle Scholar
- 52.R. Ramachandran, K. Ganesan, M. Rajkumar, L. Asirvatham, S. Wongwises, Int. Commun. Heat Mass Transf. 76, 294 (2016)CrossRefGoogle Scholar
- 53.S. Senthilraja, K. Vijayakumar, R. Gangadevi, Dig. J. Nanomater. Biostruct. 10, 1449 (2015)Google Scholar
- 54.M.S. Tahat, A.C. Benim, Defect Diffus. Forum 374, 148 (2017)CrossRefGoogle Scholar
- 55.S. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, 1980)Google Scholar
- 56.E. Abedini, T. Zarei, M. Afrand, S. Wongwises, J. Mol. Liq. 231, 11 (2017)CrossRefGoogle Scholar
- 57.M. Afrand, Int. J. Therm. Sci. 118, 12 (2017)CrossRefGoogle Scholar
- 58.M. Afrand, S. Farahat, A.H. Nezhad, G. Ali Sheikhzadeh, F. Sarhaddi, Int. J. Appl. Electromagn. Mech. 46, 809 (2014)CrossRefGoogle Scholar
- 59.M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transf. Res. 45, 749 (2014)CrossRefGoogle Scholar
- 60.M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transf. Res. 45, 749 (2014)CrossRefGoogle Scholar
- 61.M. Afrand, N. Sina, H. Teimouri, A. Mazaheri, M.R. Safaei, M.H. Esfe, J. Kamali, D. Toghraie, Int. J. Appl. Mech. 7, 1550052 (2015)CrossRefGoogle Scholar
- 62.A.J. Ahmad Hajatzadeh Pordanjani, Afshin Ahmadi Nadooshan, Masoud Afrand, Int. J. Heat Mass Transf. 121, 565 (2018)CrossRefGoogle Scholar
- 63.M.A. Ali Karimi, Energy Convers. Manag. 164, 615 (2018)CrossRefGoogle Scholar
- 64.H. Teimouri, G.A. Sheikhzadeh, M. Afrand, M.M. Fakhari, J. Mol. Liq. 227, 114 (2017)CrossRefGoogle Scholar
- 65.E. Abu-Nada, A.J. Chamkha, Eur. J. Mech. B Fluids 29, 472 (2012)CrossRefGoogle Scholar
- 66.M.A. Waheed, Int. J. Heat Mass Transf. 52, 5055 (2009)CrossRefGoogle Scholar
- 67.R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transf. 50, 2002 (2007)CrossRefGoogle Scholar
- 68.M.H. Esfe, M. Akbari, A. Karimipour, Masoud Afrand, O. Mahian, S. Wongwises, Int. J. Heat Mass Transf. 85, 656 (2015)CrossRefGoogle Scholar
- 69.S. Rashidi, M. Bovand, J.A. Esfahani, Desalination 395, 79 (2016)CrossRefGoogle Scholar
- 70.S. Rashidi, M. Bovand, J.A. Esfahani, Energy 88, 385 (2015)CrossRefGoogle Scholar
- 71.S. Vahedi, A.Z. Ghadi, M. Valipour, J. Mech. 34, 695 (2018)CrossRefGoogle Scholar
- 72.A.H. Pordanjani, S.M. Vahedi, F. Rikhtegar, S. Wongwises, J. Therm. Anal. Calorim. 135, 1031 (2019)CrossRefGoogle Scholar
- 73.S.M. Vahedi, A.H. Pordanjani, A. Raisi, A.J. Chamkha, Eur. Phys. J. Plus 134, 124 (2019)CrossRefGoogle Scholar
- 74.S.M. Vahedi, A.H. Pordanjani, S. Wongwises, M. Afrand, J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-019-08224-6
- 75.M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)CrossRefGoogle Scholar