Advertisement

Parity singlets and doublets of massive spin-3 particles in D = 2 + 1 via Noether gauge embedding

  • D. DalmaziEmail author
  • E. L. Mendonça
  • A. L. R. dos Santos
Regular Article
  • 4 Downloads

Abstract.

Here we demonstrate that the sixth-order (in derivatives) spin-3 self-dual model can be obtained from the fifth-order self-dual model via a Noether Gauge Embedding (NGE) of longitudinal Weyl transformations \( \eta_{(\mu\nu} \partial_{\alpha)} \Phi\) . In the case of doublet models we can show that the massive spin-3 Singh-Hagen theory is dual to a fourth- and to a sixth-order theory, via a double round of the NGE procedure by imposing traceless longitudinal (reparametrization-like) symmetries \( \partial_{(\mu} \tilde{\xi}_{\nu\alpha)}\) in the first round and transverse Weyl transformations \( \eta_{(\mu\nu}\psi^T_{\alpha)}\) in the second one. Our procedure automatically furnishes the dual maps between the corresponding fields. Contrary to the spin-2 case where an extra (Weyl) symmetry shows up in the highest-order term, in the spin-3 case only the required symmetries by the NGE procedure appear in the sixth-order doublet model. Consequently, the absence of ghosts still demands an auxiliary scalar field.

References

  1. 1.
    M.A. Anacleto, A. Ilha, J.R.S. Nascimento, R.F. Ribeiro, C. Wotzasek, Phys. Lett. B 504, 268 (2001)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E.L. Mendonça, D.S. Lima, A.L.R. dos Santos, Phys. Lett. B 783, 387 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    D. Dalmazi, E.L. Mendonça, JHEP 09, 011 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    E.L. Mendonça, D. Dalmazi, Phys. Rev. D 91, 065037 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    D. Dalmazi, A.L.R. dos Santos, R.R. Lino dos Santos, Phys. Rev. D 98, 105002 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    E.A. Bergshoeff, O. Hohm, Ann. Phys. 325, 1118 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    E. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102, 201301 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Fierz, W. Pauli, Proc. R. Soc. London A 173, 211 (1939)ADSCrossRefGoogle Scholar
  9. 9.
    R. Andringa, Eric A. Bergshoeff, M. de Roo, O. Hohm, E. Sezgin, P.K. Townsend, Class. Quantum. Grav. 27, 025010 (2010) arXiv:0907.4658ADSCrossRefGoogle Scholar
  10. 10.
    D. Dalmazi, E.L. Mendonça, Phys. Rev. D 94, 025033 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L.P.S. Singh, C.R. Hagen, Phys. Rev. D 9, 898 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    T. Damour, S. Deser, Ann. I.H.P., Sect. A 47, 277 (1987)Google Scholar
  13. 13.
    S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982) 185ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UNESP - Campus de GuaratinguetáGuaratinguetáBrazil
  2. 2.Instituto Tecnológico de AeronáuticaSão José dos CamposBrazil

Personalised recommendations