Advertisement

An advanced method with convergence analysis for solving space-time fractional partial differential equations with multi delays

  • Ömür Kıvanç KürkçüEmail author
  • Ersin Aslan
  • Mehmet Sezer
Regular Article
  • 33 Downloads

Abstract.

This study considers the space-time fractional partial differential equations with multi delays under a unique formulation, proposing a numerical method involving advanced matrix system. This matrix system is made up of the matching polynomial of complete graph together with fractional Caputo and Jumarie derivative types. Also, the derivative types are scrutinized to determine which of them is more proper for the method. Convergence analysis of the method is established via an average value of residual function using double integrals. The obtained solutions are improved with the aid of a residual error estimation. A general computer program module, which contains few steps, is developed. Tables and figures prove the efficiency and simplicity of the method. Eventually, an algorithm is given to illustrate the basis of the method.

References

  1. 1.
    H.G. Sun, W. Chen, C. Li, Y.Q. Chen, Physica A 389, 2719 (2010)CrossRefADSGoogle Scholar
  2. 2.
    A.V. Chechkin, R. Gorenflo, I.M. Sokolov, J. Phys. A 38, 679 (2005)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J. Sabatier, O.P. Agrawal, Advances in Fractional Calculus, in Theoretical Developments and Applications in Physics and Engineering (Springer, 2007)Google Scholar
  4. 4.
    V.A. Vyawahare, P.S.V. Nataraj, in Proceedings of the 2013 European Control Conference (ECC) (Zürich, Switzerland, 2013)Google Scholar
  5. 5.
    X.-N. Cao, J.-L. Fu, H. Huang, Adv. Appl. Math. Mech. 4, 848 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    M.S. Tavazoei, M. Haeri, Phys. Lett. A 372, 798 (2008)CrossRefADSGoogle Scholar
  7. 7.
    H. Thabet, S. Kendre, Chaos, Solitons Fractals 109, 238 (2018)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    K. Moaddy, S. Momani, I. Hashim, Comput. Math. Appl. 61, 1209 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    K.S. Tasneem, D.J. Higham, Appl. Numer. Math. 24, 425 (1997)CrossRefMathSciNetGoogle Scholar
  10. 10.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  11. 11.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, San Diego 2006)Google Scholar
  12. 12.
    L. Zhu, Y. Wang, Nonlinear Dyn. 89, 1915 (2017)CrossRefGoogle Scholar
  13. 13.
    F.A. Rihan, Numer. Methods Partial Differ. Equ. 26, 1556 (2009)Google Scholar
  14. 14.
    S.Yu. Reutskiy, Appl. Math. Model. 45, 238 (2017)CrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Zhang, F. Liu, V. Anh, Appl. Math. Comput. 217, 2534 (2010)MathSciNetGoogle Scholar
  16. 16.
    D.B. Dhaigude, G.A. Birajdar, Adv. Appl. Math. Mech. 6, 107 (2014)CrossRefMathSciNetGoogle Scholar
  17. 17.
    N. Kurt, M. Sezer, J. Franklin Inst. 345, 839 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    N. Baykuş, M. Sezer, Numer. Methods Partial Differ. Equ. 27, 1327 (2011)CrossRefGoogle Scholar
  19. 19.
    N. Baykuş Savaşaneril, M. Sezer, Appl. Math. Inf. Sci. 11, 1795 (2017)CrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Bülbül, M. Sezer, Int. J. Comput. Math. 88, 533 (2011)CrossRefMathSciNetGoogle Scholar
  21. 21.
    S, Yüzbaşi, N. Sahin, M. Sezer, Math. Methods Appl. Sci. 35, 1126 (2012)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Ö.K. Kürkçü, E. Aslan, M. Sezer, Appl. Math. Comput. 276, 324 (2016)MathSciNetGoogle Scholar
  23. 23.
    Ö.K. Kürkçü, E. Aslan, M. Sezer, Sains Malays. 46, 335 (2017)CrossRefGoogle Scholar
  24. 24.
    Ö.K. Kürkçü, E. Aslan, M. Sezer, Appl. Numer. Math. 121, 134 (2017)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Ö.K. Kürkçü, E. Aslan, M. Sezer, Ö. I, Int. J. Comput. Meth. 15, 1850039 (2018)CrossRefGoogle Scholar
  26. 26.
    Ö.K. Kürkçü, E. Aslan, M. Sezer, Turk. J. Math. 43, 373 (2019)CrossRefGoogle Scholar
  27. 27.
    M. Caputo, Elasticità e Dissipazione (Zanichelli, Bologna, 1969)Google Scholar
  28. 28.
    G. Jumarie, Comput. Math. Appl. 51, 1367 (2006)CrossRefMathSciNetGoogle Scholar
  29. 29.
    U. Ghosh, S. Sengupta, S. Sarkar, S. Das, Eur. J. Acad. Essays 2, 70 (2015)Google Scholar
  30. 30.
    E.J. Farrell, J. Combin. Theory Ser. B 27, 75 (1979)CrossRefMathSciNetGoogle Scholar
  31. 31.
    I. Gutman, Publ. Inst. Math. Beograd 22, 63 (1977)MathSciNetGoogle Scholar
  32. 32.
    I. Gutman, Match Commun. Math. Co. 6, 75 (1979)Google Scholar
  33. 33.
    J. Aihara, Bull. Chem. Soc. Jpn. 52, 1529 (1979)CrossRefGoogle Scholar
  34. 34.
    F. Harary, Graph Theory (Addison-Wesley, New York, 1994)Google Scholar
  35. 35.
    J.L. Gross, J. Yellen, P.F. Zhang, Handbook of Graph Theory (CRC Press, New York, 2013)Google Scholar
  36. 36.
    E. Aslan, Bull. Int. Math. Virtual Inst. 4, 53 (2014)MathSciNetGoogle Scholar
  37. 37.
    G. Bacak-Turan, A. Kirlangiç, Ars Combin. 102, 333 (2011)MathSciNetGoogle Scholar
  38. 38.
    G. Gunther, B.L. Hartnell, Proceedings of the Eighth Manitoba Conference on Numerical Mathematics and Computing, Vol. 285 (1978)Google Scholar
  39. 39.
    O.J. Heilmann, E.H. Lieb, Commun. Math. Phys. 25, 190 (1972)CrossRefADSGoogle Scholar
  40. 40.
    E.W. Weisstein, Matching Polynomial, in MathWorld: A Wolfram Web Resource, http://mathworld.wolfram.com/MatchingPolynomial.html
  41. 41.
    H. Hosoya, Discr. Appl. Math. 19, 239 (1988)CrossRefGoogle Scholar
  42. 42.
    W. Yan, Y.-N. Yeh, Discr. Appl. Math. 157, 195 (2009)CrossRefGoogle Scholar
  43. 43.
    K. Diethelm, The Analysis of Fractional Differential Equations (Springer-Verlag, Berlin Heidelberg, 2010)Google Scholar
  44. 44.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, with Formulas, graphs, and Mathematical Tables, in Appl. Math. Ser., Vol. 55 (National Bureau of Standards, 1964)Google Scholar
  45. 45.
    M. Du, X. Qiao, B. Wang, Y. Wang, B. Gao, Appl. Math. Comput. 347, 15 (2019)MathSciNetGoogle Scholar
  46. 46.
    X.Q. Du, S. Gao, Acta Oceanol. Sin. 34, 121 (2012)Google Scholar
  47. 47.
    N. Qiu, J. Shenyang Univ. 28, 170 (2016)Google Scholar
  48. 48.
    Y.L. Wang, L.J. Su, Comput. Math. Appl. 61, 421 (2011)CrossRefMathSciNetGoogle Scholar
  49. 49.
    V.R. Hosseini, W. Chen, Z. Avazzadeh, Eng. Anal. Bound. Elem. 38, 31 (2014)CrossRefMathSciNetGoogle Scholar
  50. 50.
    M. Zheng, F. Liu, V. Anh, I. Turner, Appl. Math. Model. 40, 4970 (2016)CrossRefMathSciNetGoogle Scholar
  51. 51.
    M. Dehghan, M. Safarpoor, M. Abbaszadeh, J. Comput. Appl. Math. 290, 174 (2015)CrossRefMathSciNetGoogle Scholar
  52. 52.
    C. Li, W. Deng, Adv. Appl. Math. Mech. 9, 282 (2017)CrossRefMathSciNetGoogle Scholar
  53. 53.
    A. Mohebbi, M. Abbaszadeh, M. Dehghan, J. Comput. Phys. 240, 36 (2013)CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    F.H. Zeng, C.P. Li, F.W. Liu, I. Turner, SIAM J. Sci. Comput. 37, A55 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematicsİzmir University of EconomicsİzmirTurkey
  2. 2.Department of Software EngineeringManisa Celal Bayar UniversityManisaTurkey
  3. 3.Department of MathematicsManisa Celal Bayar UniversityManisaTurkey

Personalised recommendations