Advertisement

Neutron-induced damage simulations: Beyond defect production cross-section, displacement per atom and iron-based metrics

  • J. -Ch. SubletEmail author
  • I. P. Bondarenko
  • G. Bonny
  • J. L. Conlin
  • M. R. Gilbert
  • L. R. Greenwood
  • P. J. Griffin
  • P. Helgesson
  • Y. Iwamoto
  • V. A. Khryachkov
  • T. A. Khromyleva
  • A. Yu. Konobeyev
  • N. Lazarev
  • L. Luneville
  • F. Mota
  • C. J. Ortiz
  • D. Rochman
  • S. P. Simakov
  • D. Simeone
  • H. Sjostrand
  • D. Terentyev
  • R. Vila
Review
  • 79 Downloads

Abstract.

Nuclear interactions can be the source of atomic displacement and post-short-term cascade annealing defects in irradiated structural materials. Such quantities are derived from, or can be correlated to, nuclear kinematic simulations of primary atomic energy distributions spectra and the quantification of the numbers of secondary defects produced per primary as a function of the available recoils, residual and emitted, energies. Recoils kinematics of neutral, residual, charged and multi-particle emissions are now more rigorously treated based on modern, complete and enhanced nuclear data parsed in state of the art processing tools. Defect production metrics are the starting point in this complex problem of correlating and simulating the behaviour of materials under irradiation, as direct measurements are extremely improbable. The multi-scale dimensions (nuclear-atomic-molecular-material) of the simulation process is tackled from the Fermi gradation to provide the atomic- and meso-scale dimensions with better metrics relying upon a deeper understanding and modelling capabilities of the nuclear level. Detailed, segregated primary knock-on-atom metrics are now available as the starting point of further simulation processes of isolated and clustered defects in material lattices. This allows more materials, incident energy ranges and particles, and irradiations conditions to be explored, with sufficient data to adequately cover both standard applications and novel ones, such as advanced-fission, accelerators, nuclear medicine, space and fusion. This paper reviews the theory, describes the latest methodologies and metrics, and provides recommendations for standard and novel approaches.

References

  1. 1.
    M.J. Norgett, M.T. Robinson, I.M. Torrens, Nucl. Eng. Des. 33, 50 (1975)CrossRefGoogle Scholar
  2. 2.
    G.R. Odette, D.R. Doiron, Nucl. Tech. 29, 346 (1976)CrossRefGoogle Scholar
  3. 3.
    D. Simeone, J.M. Costantini, L. Luneville, L. Desgranges, P. Trocellier, P. Garcia, J. Mater. Res. 30, 1495 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    G.J. Dienes, G.H. Veneyard, Radiation Effects in Solids (Interscience, New York, 1957)Google Scholar
  5. 5.
    N. Bohr, J. Lindhard, Mat. Fys. Medd. Dan. Vid. Setsk. 18, 1495 (1948)Google Scholar
  6. 6.
    J. Lindhard, M. Scharff, H.E. Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk 33, l (1963)Google Scholar
  7. 7.
    D. Simeone, L. Luneville, Y. Serruys, Phys. Rev. E 82, 011122 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    D. Simeone, L. Luneville, J.P. Both, EPL 83, 56002 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L. Luneville, D. Simeone, W. Weber, J. Nucl. Mater. 415, 55 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L. Luneville, K. Mallick, V. Pontikis, D. Simeone, Phys. Rev. E 94, 0521262 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Luneville, D. Simeone, C. Jouanne, J. Nucl. Mater. 353, 89 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    P. Sigmund, Radiation Damage Processes in Materials (Dupuy, Leiden, 1975)Google Scholar
  13. 13.
    J. Lindhard, V. Nielsen, M. Scharff, Mat. Fys. Medd. Dan. Vid. Setsk. 36, 89 (1968)Google Scholar
  14. 14.
    G.H. Kinchin, R.S. Pease, Rep. Prog. Phys. 18, 1 (1955)ADSCrossRefGoogle Scholar
  15. 15.
    Don M. Parkin, C. Alton Coulter, J. Nucl. Mater. 101, 261 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    D. Simeone, O. Hablot, V. Micalet, P. Bellon, Y. Serruys, J. Nucl. Mater. 246, 206 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010) http://srim.org/ ADSCrossRefGoogle Scholar
  18. 18.
    M.T. Robinson, J. Nucl. Mater. 216, 1 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    G. Demange, E. Antoshchenkova, M. Hayoun, L. Luneville, D. Simeone, J. Nucl. Mater. 486, 26 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M.T. Robinson, The Energy Dependence of Neutron Damage in Solid, in ICE Virtual Library - Nuclear fusion reactors (1970) pp. 364--378Google Scholar
  21. 21.
    D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, S.J. Wooding, Nucl. Instrum. Methods Phys. Res. B 102, 37 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    F. Gao, D.J. Bacon, L.M. Howe, C.B. So, J. Nucl. Mater. 294, 288 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Flynn, R.S. Averback, Phys. Rev. B, Rapid Commun. 38, 7118 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    A. Akkerman, J. Barak, IEEE Trans. Nucl. Sci. 53, 3667 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    M. Griffiths, AECL Nucl. Rev. 2, 1 (2013)CrossRefGoogle Scholar
  26. 26.
    L. Greenwood, J. Nucl. Mater. 115, 137 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    L. Luneville, J.-Ch. Sublet, D. Simeone, J. Nucl. Mater. 505, 262 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    T. Khromyleva, I. Bondarenko, A. Gurbich, V. Ketlerov, V. Khryachkov, P. Prusachenko, Nucl. Sci. Eng. 191, 282 (2018)CrossRefGoogle Scholar
  29. 29.
    L.R. Greenwood, B.M. Oliver, J. ASTM Int. 3, 1 (2006)Google Scholar
  30. 30.
    L.R. Greenwood, R.K. Smither, SPECTER: Neutron Damage Calculations for Materials Irradiations (1985) ANL/FPP/TM-197Google Scholar
  31. 31.
    F.A. Garner et al., J. Nucl. Mater. 122, 356 (2006)Google Scholar
  32. 32.
    L.R. Greenwood, F.A. Garner, B.M. Oliver, M.L. Grossbeck, W.G. Wolfer, J. ASTM Int. 1, 1 (2004)CrossRefGoogle Scholar
  33. 33.
    H. Liu, M.A. Abdou, L.R. Greenwood, Fus. Eng. Des. 88, 2860 (2013)CrossRefGoogle Scholar
  34. 34.
    L.R. Greenwood, D.G. Graczyk, D.W. Kneff, J. Nucl. Mater. 1335, 155 (1988)Google Scholar
  35. 35.
    L.R. Greenwood, J. Nucl. Mater. 141--143, 654 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    F.A. Garner, Compreh. Nucl. Mater. 4, 33 (2012)CrossRefGoogle Scholar
  37. 37.
    A.J. Koning, Eur. Phys. J. A 51, 184 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Koning, TALYS-1.9, User Manual (Nuclear Research and Consultancy Group NRG, 2017) http://www.talys.eu/download-talys/
  40. 40.
    A.J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nucl. Data Sheets 155, 1 (2019) Special Issue on Nuclear Reaction DataADSCrossRefGoogle Scholar
  41. 41.
    P. Helgesson, H. Sjöstrand, D. Rochman, Nucl. Data Sheets 145, 1 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    R.E. Stoller, G.R. Odette, J. Nucl. Mater. 186, 203 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    R.E. MacFarlane, A.C. Kahler, Nucl. Data Sheets 111, 2739 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    R.E. MacFarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler, J.L. Conlin, W. Haeck, The NJOY nuclear data processing system, version 2016 (Los Alamos National Laboratory LA-UR-17-20093, 2016) https://github.com/njoy/NJOY2016-manual
  45. 45.
    NJOY2016 Nuclear Data Processing System (2016) https://njoy.github.io/NJOY2016/
  46. 46.
    J.-Ch. Sublet, J.W. Eastwood, J.G. Morgan, M.R. Gilbert, M. Fleming, W. Arter, Nucl. Data Sheets 139, 77 (2017) https://fispact.ukaea.uk/ ADSCrossRefGoogle Scholar
  47. 47.
    L.R. Greenwood, R.K. Smither, Displacement Damage Calculations with ENDF/B-V, in Proceedings of the Advisory Group Meeting on Nuclear Data for Radiation Damage Assessment and Reactor Safety Aspects, Vienna, Austria (IAEA, 1981)Google Scholar
  48. 48.
    J.-Ch. Sublet, IAEA Primary Radiation Damage Cross-Sections CRP files (2018) https://www-nds.iaea.org/CRPdpa/
  49. 49.
    M.R. Gilbert, J. Marian, J.-Ch. Sublet, J. Nucl. Mater. 467, 121 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    M.R. Gilbert, J.-Ch. Sublet, Nucl. Mater. Energy 9, 576 (2016)CrossRefGoogle Scholar
  51. 51.
    M.R. Gilbert, SPECTRA-PKA (2018) code available to download from github at https://github.com/fispact/SPECTRA-PKA
  52. 52.
    M.R. Gilbert, J.-Ch. Sublet, J. Nucl. Mater. 504, 01 (2018)CrossRefGoogle Scholar
  53. 53.
    A.J. Koning, D. Rochman, TENDL-2017 (2018) available from https://tendl.web.psi.ch/tendl_2017/tendl2017.html
  54. 54.
    D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018) Special Issue on Nuclear Reaction DataADSCrossRefGoogle Scholar
  55. 55.
    A. Trkov, M. Herman, D.A. Brown (Editors), ENDF-6 Formats Manual, Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI. ENDF/B-VII and ENDF/B-VIII, CSEWG Document ENDF-102 BNL-203218 (2018)Google Scholar
  56. 56.
    T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, Pi-En Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita, J. Nucl. Sci. Technol. 55, 684 (2018)CrossRefGoogle Scholar
  57. 57.
    Y. Iwamoto, T. Sato, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, R. Hosoyamada, K. Niita, J. Nucl. Sci. Technol. 54, 617 (2017)CrossRefGoogle Scholar
  58. 58.
    K. Niita, Y. Iwamoto, T. Sato, H. Iwase, N. Matsuda, Y. Sakamoto, H. Nakashima, A new treatment of radiation behaviour beyond one-body observables, in Proceedings of International Conference on Nuclear Data for Science and Technology 2007, Nice, France, April 22–27, 2007 (EDP Sciences, 2007)Google Scholar
  59. 59.
    T. Ogawa, T. Sato, S. Hashimoto, K. Niita, Nucl. Instrum. Methods A 763, 575 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    Y. Iwamoto, K. Niita, T. Sawai, R.M. Ronningen, T. Baumann, Nucl. Instrum. Methods B 274, 57 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    S. Furihata, Nucl. Instrum. Methods B 171, 251 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    T. Ogawa, S. Hashimoto, T. Sato, K. Niita, Nucl. Instrum. Methods B 325, 35 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, K. Furutaka, T. Oshawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011)CrossRefGoogle Scholar
  64. 64.
    M.B. Chadwick, P. Obložinský, M.W. Herman et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Y. Iwamoto, T. Ogawa, Nucl. Instrum. Methods B 396, 26 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    Y. Iwamoto, H. Iwamoto, M. Harada, K. Niita, J. Nucl. Sci. Technol. 51, 98 (2014)CrossRefGoogle Scholar
  67. 67.
    P. Griffin, D. Rochman, A. Koning, EPJ Web of Conferences 146, 02008 (2017)CrossRefGoogle Scholar
  68. 68.
    R.E. Stoller, Primary Radiation Damage Cross-Sections, Summary Report of the Second Research Coordination Meeting, Technical Report INDC(NDS)-0691 (IAEA, 2015) https://www-nds.iaea.org/publications/indc/indc-nds-0691/
  69. 69.
    N. Otsuka et al., Nucl. Data Sheets 120, 272 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    A.J. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024 (2008)CrossRefGoogle Scholar
  71. 71.
    E. Bauge, P. Dossantos-Uzarralde, J. Korean Physical Society 59, 1218 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    E. Bauge, M. Dupuis, S. Hilaire, S. Péru, A.J. Koning, D. Rochman, S. Goriely, Nucl. Data Sheets 118, 32 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, EPJ Nucl. Sci. Technol. 3, 14 (2017)CrossRefGoogle Scholar
  74. 74.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, G. Perret, EPJ Nucl. Sci. Technol. 4, 7 (2018)ADSCrossRefGoogle Scholar
  75. 75.
    D.C. Larson, D.M. Hetrick, N.M. Larson, C.Y. Fu, S.J. Epperson, Evaluation of ${}^{28,29,30}$Si for ENDF/B-VI, Technical Report ORNL-TM-11825 (ORNL, 1991)Google Scholar
  76. 76.
    W.E. Kinney, J.W. McConnell, High resolution neutron scattering experiments at ORELA, in Proceedings of International Conference of Neutron Interaction with Nuclei Lowell, MA, USA, Vol. 2 (1976) p. 1319Google Scholar
  77. 77.
    F.G. Perey, T.A. Love, W.E. Kinney, A test of neutron total cross-section evaluations from 0.2 to 20MeV for C, O, Al, Si, Ca, Fe, and Si02, Technical Report ORNL-4823 (ORNL, 1972)Google Scholar
  78. 78.
    S.P. Simakov, A.J. Koning, A.Yu. Konobeyev, EPJ Web of Conferences 146, 02012 (2017)CrossRefGoogle Scholar
  79. 79.
    S.P. Simakov, U. Fischer, A.J. Koning, A.Yu. Konobeyev, D.A. Rochman, Nucl. Mater. Energy 15, 244 (2018)CrossRefGoogle Scholar
  80. 80.
    R.E. Stoller, L.R. Greenwood, J. Nucl. Mater. 271-272, 57 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    S.P. Simakov, A.Yu. Konobeyev, U. Fischer, V. Heinzel, J. Nucl. Mater. 386, 52 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    A.Yu. Konobeyev, U. Fischer, Yu.A. Korovin, S.P. Simakov, IOTA-2017: a code for the simulation of ion transport in materials (2017) KIT Scientific Working Papers 63 https://publikationen.bibliothek.kit.edu/1000077011
  83. 83.
    K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary Radiation Damage in Materials, Report NEA/NSC/DOC(2015)9 (2015)Google Scholar
  84. 84.
    Kai Nordlund, Steven J. Zinkle, Andrea Sand, Fredric Granberg, Robert S. Averback, R.E. Stoller, Tomoaki Suzudo, Lorenzo Malerba, Florian Banhart, William Weber, Francois Willaime, Sergei Dudarev, D. Simeone, Nat. Commun. 9, 1 (2018)CrossRefGoogle Scholar
  85. 85.
    C.J. Ortiz, J. Comb. Mat. Sci. 154, 325 (2018)CrossRefGoogle Scholar
  86. 86.
    R.E. Stoller, Compreh. Nucl. Mater. 1, 293 (2012)CrossRefGoogle Scholar
  87. 87.
    K. Nordlund, J. Wallenius, L. Malerbar, Nucl. Instrum. Methods B 246, 32 (2005)Google Scholar
  88. 88.
    C.S. Becquart P. Olsson, C. Domain, Mat. Res. Lett. 4, 219 (2016)CrossRefGoogle Scholar
  89. 89.
    Subcommittee E10.05 on Nuclear Radiation Metrology, ASTM standard E693-17: Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA) (ASTM International, 2012)Google Scholar
  90. 90.
    J.A. Horak, T.M. Blewitt, J. Nucl. Mater. 49, 161 (1973)ADSCrossRefGoogle Scholar
  91. 91.
    S. Takamura, T. Arubat, J. Nucl. Mater. 136, 159 (1985)ADSCrossRefGoogle Scholar
  92. 92.
    G. Wallner, M.S. Anand, L.R. Greenwood et al., J. Nucl. Mater. 152, 146 (1988)ADSCrossRefGoogle Scholar
  93. 93.
    A. Trkov, R. Capote, Phys. Proc. 64, 48 (2015)ADSCrossRefGoogle Scholar
  94. 94.
    A.F. Calder, D.J. Bacon, A.V. Barashev, Yu.N. Osetsky, Philos. Mag. 90, 863 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88, 125505 (2002)ADSCrossRefGoogle Scholar
  96. 96.
    Mai Ghaly, R.S. Averback, Phys. Rev. Lett. 72, 364 (1994)ADSCrossRefGoogle Scholar
  97. 97.
    Mai Ghaly, Kai Nordlund, R.S. Averback, Philos. Mag. A 79, 795 (1999)CrossRefGoogle Scholar
  98. 98.
    N.P. Lazarev, V.I. Dubinko, Radiat. Effects Defects Solids 158, 803 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    N.P. Lazarev, A.S. Bakai, J. Supercrit. Fluids 82, 22 (2013)CrossRefGoogle Scholar
  100. 100.
    M. Eldrup, B.N. Singh, S.J. Zinkle, T.S. Byun, K. Farrell, J. Nucl. Mater. 307-311, 912 (2002)ADSCrossRefGoogle Scholar
  101. 101.
    G.R. Odette, G.E. Lucas, JOM 53, 18 (2001)CrossRefGoogle Scholar
  102. 102.
    E. Meslin, M. Lambrecht, M. Hernández-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gómez-Briceño, A. Ulbricht, A. Almazouzi, J. Nucl. Mater. 406, 73 (2010)ADSCrossRefGoogle Scholar
  103. 103.
    A. Kuramoto, T. Toyama, Y. Nagai, K. Inoue, Y. Nozawa, M. Hasegawa, M. Valo, Acta Mater. 61, 5236 (2013)CrossRefGoogle Scholar
  104. 104.
    Wei-Ying Chen, Yinbin Miao, Yaqiao Wu, Carolyn A. Tomchik, Kun Mo, Jian Gan, Maria A. Okuniewski, Stuart A. Maloy, James F. Stubbins, J. Nucl. Mater. 462, 242 (2015)ADSCrossRefGoogle Scholar
  105. 105.
    Takaaki Koyanagi, N.A.P. Kiran Kumar, Taehyun Hwang, Lauren M. Garrison, Xunxiang Hu, Lance L. Snead, Yutai Katoh, J. Nucl. Mater. 490, 66 (2017)ADSCrossRefGoogle Scholar
  106. 106.
    M. Fukuda, T. Tanno, S. Nogami, A. Hasegawa, Mater. Trans. 53, 2145 (2012)CrossRefGoogle Scholar
  107. 107.
    S.J. Zinkle, B.N. Singh, J. Nucl. Mater. 351, 269 (2006)ADSCrossRefGoogle Scholar
  108. 108.
    F.A. Garner, M.B. Toloczko, B.H. Sencer, J. Nucl. Mater. 276, 123 (2000)ADSCrossRefGoogle Scholar
  109. 109.
    M.B. Toloczko, F.A. Garner, V.N. Voyevodin, V.V. Bryk, O.V. Borodin, V.V. Melʼnychenko, A.S. Kalchenko, J. Nucl. Mater. 453, 323 (2014)ADSCrossRefGoogle Scholar
  110. 110.
    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004)ADSGoogle Scholar
  111. 111.
    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001)ADSCrossRefGoogle Scholar
  112. 112.
    M.I. Mendelev, G.J. Ackland, Philos. Mag. Lett. 87, 349 (2007)ADSCrossRefGoogle Scholar
  113. 113.
    P. Olsson, J. Wallenius, C. Domain, K. Nordlund, L. Malerba, Phys. Rev. B 72, 214119 (2005)ADSCrossRefGoogle Scholar
  114. 114.
    G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba, Philos. Mag. 91, 1724 (2011)ADSCrossRefGoogle Scholar
  115. 115.
    G. Bonny, R.C. Pasianot, L. Malerba, Model. Simul. Mater. Sci. Eng. 17, 025010 (2009)ADSCrossRefGoogle Scholar
  116. 116.
    G. Bonny, R.C. Pasianot, N. Castin, L. Malerba, Philos. Mag. 89, 3531 (2009)ADSCrossRefGoogle Scholar
  117. 117.
    G. Bonny, D. Terentyev, A. Bakaev, E.E. Zhurkin, M. Hou, D. Van Neck, L. Malerba, J. Nucl. Mater. 442, 282 (2013)ADSCrossRefGoogle Scholar
  118. 118.
    G. Bonny, A. Bakaev, D. Terentyev, Yu.A. Mastrikov, J. Appl. Phys. 121, 165107 (2017)ADSCrossRefGoogle Scholar
  119. 119.
    J.F. Ziegler, U. Littmark, J.P. Biersack, The Stopping and Range of Ions in Solids (Pergamon, 1985)Google Scholar
  120. 120.
    C. Bjorkas, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 259, 853 (2007)ADSCrossRefGoogle Scholar
  121. 121.
    D. Terentyev, A. Zinovev, G. Bonny, J. Nucl. Mater. 475, 132 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    A.E. Sand, S.L. Dudarev, K. Nordlund, EPL 103, 46003 (2013)ADSCrossRefGoogle Scholar
  123. 123.
    K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)CrossRefGoogle Scholar
  124. 124.
    R.E. Voskoboinikov, Y.N. Osetsky, D.J. Bacon, J. Nucl. Mater. 377, 385 (2008)ADSCrossRefGoogle Scholar
  125. 125.
    F. Gao, D.J. Bacon, A.V. Barashev, H.L. Heinisch, MRS Proc. 540, 703 (1998)CrossRefGoogle Scholar
  126. 126.
    S.I. Golubov, A.V. Barashev, R.E. Stoller, Compreh. Nucl. Mater. 1, 357 (2012)CrossRefGoogle Scholar
  127. 127.
    C.H. Woo, B.N. Singh, Philos. Mag. A 65, 889 (1992)ADSCrossRefGoogle Scholar
  128. 128.
    B.D. Wirth, G.R. Odette, D. Maroudas, G.E. Lucas, J. Nucl. Mater. 244, 185 (1997)ADSCrossRefGoogle Scholar
  129. 129.
    K. Vörtler, C. Björkas, D. Terentyev, L. Malerba, K. Nordlund, J. Nucl. Mater. 382, 24 (2008)ADSCrossRefGoogle Scholar
  130. 130.
    M. Tikhonchev, V. Svetukhin, E. Gaganidze, J. Nucl. Mater. 442, S618 (2013)ADSCrossRefGoogle Scholar
  131. 131.
    T. Toyama, A. Kuramoto, Y. Nagai, K. Inoue, Y. Nozawa, Y. Shimizu, Y. Matsukawa, M. Hasegawa, M. Valo, J. Nucl. Mater. 449, 207 (2014)ADSCrossRefGoogle Scholar
  132. 132.
    G. Bonny, D. Terentyev, E.E. Zhurkin, L. Malerba, J. Nucl. Mater. 452, 486 (2014)ADSCrossRefGoogle Scholar
  133. 133.
    D. Terentyev, X. He, G. Bonny, A. Bakaev, E. Zhurkin, L. Malerba, J. Nucl. Mater. 457, 173 (2015)ADSCrossRefGoogle Scholar
  134. 134.
    P. Jung, J. Nucl. Mater. 117, 70 (1983)ADSCrossRefGoogle Scholar
  135. 135.
    P. Jung, Production of atomic defects in metals, in Landolt-Boernstein, Croup III: Crystal and Solid State Physics (Springer-Verlag, Berlin, 1991)Google Scholar
  136. 136.
    C.H.M. Broeders, A.Yu. Konobeyev, J. Nucl. Mater. 328, 197 (2004)ADSCrossRefGoogle Scholar
  137. 137.
    A.Yu. Konobeyev, U. Fischer, C.H.M. Broeders, L. Zanini, Improved displacement cross-sections for structural materials irradiated with intermediate and high energy protons, in Proceedings of AccApp’07, Pocatello, Idaho (2007)Google Scholar
  138. 138.
    A.Yu. Konobeyev, U. Fischer, L. Zanini, Advanced evaluations of displacement and gas production cross-sections for chromium, iron, and nickel up to 3GeV incident particle energy, in Proceedings of AccApp’11, Knoxville (2011)Google Scholar
  139. 139.
    A.Yu. Konobeyev, U. Fischer, S.P. Simakov, Nucl. Instrum. Methods Phys. Res. B 431, 55 (2018)ADSCrossRefGoogle Scholar
  140. 140.
    R.E. Stoller, J. Nucl. Mater. 276, 22 (2000)ADSCrossRefGoogle Scholar
  141. 141.
    A. Dunlop, D. Lesueur, P. Legrand, H. Dammak, J. Dural, Nucl. Instrum. Methods Phys. Res. B 90, 330 (1994)ADSCrossRefGoogle Scholar
  142. 142.
    A.Yu. Konobeyev, U. Fischer, S.P. Simakov, Nucl. Eng. Technol. 51, 170 (2019)CrossRefGoogle Scholar
  143. 143.
    A.Yu. Konobeyev, U. Fischer, L. Zanini, Neutron displacement cross-sections for materials from Be to U calculated using the arc-dpa concept, in Proceedings of AccApp’17, Quebec (2017)Google Scholar
  144. 144.
    A.Yu. Konobeyev, U. Fischer, P.E. Pereslavtsev, S.P. Simakov, S. Akca, DXS files, https://www-nds.iaea.org/public/download-endf/DXS/ (2017)
  145. 145.
    Mark T. Robinson, Phys. Rev. B 40, 10717 (1989)ADSCrossRefGoogle Scholar
  146. 146.
    F. Mota, C.J. Ortiz, R. Vila, N. Casal, A. García, A. Ibarra, J. Nucl. Mater. 442, S699 (2013)ADSCrossRefGoogle Scholar
  147. 147.
    F. Mota, R. Vila, C. Ortiz, A. Garcia, N. Casal, A. Ibarra, D. Rapisarda, V. Queral, Fus. Eng. Des. 86, 2425 (2011) Proceedings of the 26th Symposium of Fusion Technology (SOFT-26)CrossRefGoogle Scholar
  148. 148.
    P.V. Vladimirov, Yu.D. Lizunov, Radiat. Effects Defects Solids 139, 109 (1996)ADSCrossRefGoogle Scholar
  149. 149.
    Pavel Vladimirov, Serge Bouffard, C. R. Phys. 9, 303 (2008)CrossRefGoogle Scholar
  150. 150.
    MCNP5 Monte Carlo N-particle code developed by Los Alamos National Laboratory (2015) https://laws.lanl.gov/vhosts/mcnp.lanl.gov/mcnp5.shtml
  151. 151.
    FENDL 3.1b: Fusion evaluated nuclear data library v 3.1b, released on 1 july 2016 (2016) https://www-nds.iaea.org/fendl/
  152. 152.
    LAMMPS Molecular Dynamics Simulator (2015) http://lammps.sandia.gov/
  153. 153.
    HECToR: UK National Supercomputing Service (2018) http://www.hector.ac.uk
  154. 154.
    MARCONI Eurofusion HPC (2018) http://www.hpc.cineca.it/hardware/marconi
  155. 155.
    J. Knaster, the IFMIF/EVEDA Integrated Project Team, Nucl. Fus. 57, 102016 (2017)ADSCrossRefGoogle Scholar
  156. 156.
    F. Mota, Á. Ibarra, Á. García, J. Molla, Nucl. Fus. 55, 123024 (2015)ADSCrossRefGoogle Scholar
  157. 157.
    A. Ibarra, R. Heidinger, P. Barabaschi, F. Mota, A. Mosnier, P. Cara, F.S. Nitti, Fusion Sci. Technol. 66, 252 (2014)CrossRefGoogle Scholar
  158. 158.
    F. Arbeiter, A. Abou-Sena, Y. Chen, B. Dolensky, T. Heupel, C. Klein, N. Scheel, G. Schlindwein, Fusion Eng. Des. 86, 607 (2011) Proceedings of the 26th Symposium of Fusion Technology (SOFT-26)CrossRefGoogle Scholar
  159. 159.
    Iole Palermo, Iván Fernández, David Rapisarda, Angel Ibarra, Fus. Eng. Des. 109-111, 13 (2016) Proceedings of the 12th International Symposium on Fusion Nuclear Technology-12 (ISFNT-12)CrossRefGoogle Scholar
  160. 160.
    Iván Fernández-Berceruelo, David Rapisarda, Iole Palermo, Luis Maqueda, David Alonso, Tomas Melichar, Otakar Frýbort, Ladislav Vála, Ángel Ibarra, Fus. Eng. Des. 124, 822 (2017) Proceedings of the 29th Symposium on Fusion Technology (SOFT-29) Prague, Czech Republic, September 5–9, 2016CrossRefGoogle Scholar
  161. 161.
    F. Moro, A. Del Nevo, D. Flammini, E. Martelli, R. Mozzillo, S. Noce, R. Villari, Fus. Eng. Des. 136, 1260 (2018)CrossRefGoogle Scholar
  162. 162.
    P. Lu, P. Pereslavtsev, F. Hernandez, U. Fischer, Fus. Eng. Des. 125, 18 (2017)CrossRefGoogle Scholar
  163. 163.
    P. Pereslavtsev, U. Fischer, F. Hernandez, L. Lu, Fus. Eng. Des. 124, 910 (2017) Proceedings of the 29th Symposium on Fusion Technology (SOFT-29) Prague, Czech Republic, September 5–9, 2016CrossRefGoogle Scholar
  164. 164.
    E. Sikik, BR2 spectrum, private communication (2015) BR2/RCE/ES/2015/10 BR2 Neutron Spectra Position: hote planeGoogle Scholar
  165. 165.
    V.D. Sevastianov, Kharakteristiki polei neitronov, Handbook Mendeleevo, VNIIFTRI (2014) http://www.gsssd-rosatom.mephi.ru/DB-nspectra/fission/550/598.php
  166. 166.
    L.R. Greenwood, Neutron source characterization for fusion materials studies, position of the neutron spectrum: near core center (1981) Second Topical Meeting on Fusion Reactor, CONF-810831--101Google Scholar
  167. 167.
    I. Remec, F. Kam, Position of the neutron spectra: Channel 5, midplane (1997) NUREG/CR-6453 ORNL/TM-13204Google Scholar
  168. 168.
    G.R. Odette, P.J. Maziasz, J.A. Spitznagel, J. Nucl. Mater. 104, 1289 (1981)ADSCrossRefGoogle Scholar
  169. 169.
    M.E. Sawan, Fus. Eng. Des. 87, 551 (2012) Tenth International Symposium on Fusion Nuclear Technology (ISFNT-10)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. -Ch. Sublet
    • 1
    Email author
  • I. P. Bondarenko
    • 2
  • G. Bonny
    • 3
  • J. L. Conlin
    • 4
  • M. R. Gilbert
    • 5
  • L. R. Greenwood
    • 6
  • P. J. Griffin
    • 7
  • P. Helgesson
    • 8
  • Y. Iwamoto
    • 9
  • V. A. Khryachkov
    • 2
  • T. A. Khromyleva
    • 2
  • A. Yu. Konobeyev
    • 10
  • N. Lazarev
    • 11
  • L. Luneville
    • 12
  • F. Mota
    • 13
  • C. J. Ortiz
    • 13
  • D. Rochman
    • 14
  • S. P. Simakov
    • 10
  • D. Simeone
    • 12
  • H. Sjostrand
    • 8
  • D. Terentyev
    • 3
  • R. Vila
    • 13
  1. 1.International Atomic Energy AgencyViennaAustria
  2. 2.State Atomic Energy Corporation ROSATOMInstitute for Physics and Power EngineeringObninskRussia
  3. 3.Nuclear Materials Science InstituteSCK-CENMolBelgium
  4. 4.Los Alamos National LaboratoryLos AlamosUSA
  5. 5.United Kingdom Atomic Energy AuthorityCulham Science CentreAbingdonUK
  6. 6.Pacific Northwest National LaboratoryRichlandUSA
  7. 7.Sandia National LaboratoriesRadiation and Electrical Science CenterAlbuquerqueUSA
  8. 8.Uppsala UniversityDepartment of Physics and AstronomyUppsalaSweden
  9. 9.Japan Atomic Energy AgencyNuclear Science and Engineering CenterTokai, IbarakiJapan
  10. 10.Institute for Neutron Physics and Reactor TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
  11. 11.NSC Kharkiv Institute of Physics and TechnologyKharkivUkraine
  12. 12.CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  13. 13.Laboratorio Nacional de Fusión por Confinamiento Magnético CIEMATMadridSpain
  14. 14.Paul Scherrer Institut (PSI)VilligenSwitzerland

Personalised recommendations