Advertisement

In situ and laboratory analysis on the polychromy of the Ghent Pantheon cork model by Antonio Chichi

  • Anastasia RousakiEmail author
  • Possum Pincé
  • Sylvia Lycke
  • Astrid Harth
  • Maximiliaan Martens
  • Luc Moens
  • Patrick Monsieur
  • Peter Vandenabeele
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Focus Point on Scientific Research in Conservation Science

Abstract.

The Archaeological Collection of Ghent University Museum hosts one of the most remarkable cork models representing the Pantheon of Rome, made by the master Antonio Chichi (1743-1816). Ghent University started a restoration campaign dedicated to the cork masterpiece, which has great artistic value. Next to macroscopic analysis, an extensive physicochemical campaign was organised in order to study and document the composition and the preservation state of the polychromic layers of Chichi’s masterpiece. Portable and micro-Raman spectroscopy revealed the presence of materials such as carbon-based pigments, lead white, vermilion, chalk, gypsum, bassanite, Prussian blue and haematite on the exterior and interior of the cork model. A tin-containing layer was characterized on the exterior of the model. XRF instruments were employed to better understand the overall elemental composition of the model’s polychromic layers, positively identifying Pb, Sn, Zn, Ca, Hg, Fe at the exterior surface. Stratigraphic analysis was performed, with both analytical techniques, when possible. The detailed information provided by archaeology, art history and applied sciences on the cork model of the Pantheon, will help the conservators to better understand and restore the Pantheon model which will be exhibited in the new museum of Ghent University.

References

  1. 1.
    K. Verlaeckt, Gentse Bijdr. Kunstgeschied. Oudheidkd. 31, 263 (1996)Google Scholar
  2. 2.
    P. Monsieur, Een achttiende-eeuwse kurkmaquette van het Pantheon van Antonio Chichi (1743-1816), in Piranesi. De prentencollectie van de Universiteit Gent, edited by M. Delbeke, D. De Meyer, B. Rogiers, B. Verschaffel (Universiteit Gent, Gent, 2008)Google Scholar
  3. 3.
    P. Monsieur, Een 18e-eeuws kurkmodel van het Pantheon door Antonio Chichi in de Archeologische Collecties van het Gents Universiteitsmuseum, in Handelingen der Maatschappij voor Geschiedenis en Oudheidkunde te Gent 72Google Scholar
  4. 4.
    A. Büttner, Korkmodelle von Antonio Chichi. Vollständiger Katalog der Korkmodelle Hessisches Landesmuseum Darmstadt, Staatliche Kunstsammlungen Kassel, in Kataloge der Staatliche Kunstsammlungen Kassel, 6 (Kassel, 1975)Google Scholar
  5. 5.
    W. Helmberger, V. Kockel, Rom über die Alpen tragen, Fürsten sammeln antike Architektur: Die Aschaffenburger Korkmodelle, in Bayerische Verwaltung der staatlichen Schlösser, Gärten und Seen, Kataloge der Kunstsammlungen (Landshut, 1993)Google Scholar
  6. 6.
    V. Kockel, Rom über die Alpen tragen, Korkmodelle antiker Architektur im 18. und 19. Jahrhundert, in Rom über die Alpen tragen, Fürsten sammeln antike Architektur: Die Aschaffenburger Korkmodelle, ebited by W. Helmberger, V. Kockel (Landshut, 1993)Google Scholar
  7. 7.
    I. Thom, Zur Problematik der Restaurierung von Korkmodelle, in Rom über die Alpen tragen, Fürsten sammeln antike Architektur: Die Aschaffenburger Korkmodelle, ebited by W. Helmberger, V. Kockel (Landshut, 1993)Google Scholar
  8. 8.
    M.P. Morigi et al., Appl. Phys. A 100, 653 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    P. Vandenabeele, H.G.M. Edwards, L. Moens, Chem. Rev. 107, 675 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Rousaki et al., Trends Anal. Chem. 105, 338 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Rousaki, L. Moens, P. Vandenabeele, Phys. Sci. Rev. (2018)  https://doi.org/10.1515/psr-2017-0048
  12. 12.
    P. Vandenabeele, H.G.M. Edwards, J. Jehlička, Chem. Soc. Rev. 43, 2628 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Vandenabeele, M.K. Donais, Appl. Spectrosc. 70, 27 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C. Miliani et al., Appl. Phys. A 106, 295 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    D. Buti et al., Anal. Bioanal. Chem. 405, 2699 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Janssens et al., X-Ray Spectrom. 29, 73 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    G. Van der Snickt et al., Angew. Chem. 129, 4875 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Janssens et al., Elements 12, 39 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Moens et al., J. Trace Microprobe Tech. 13, 119 (1995)ADSGoogle Scholar
  20. 20.
    D. Lauwers et al., Spectrochim. Acta A 118, 294 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    D. Hutsebaut, P. Vandenabeele, L. Moens, Analyst 130, 1204 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    R.L. McCreery, Raman Spectroscopy for Chemical Analysis (John Wiley & Sons, New York, USA, 2000)Google Scholar
  23. 23.
    B. Vekemans et al., X-Ray Spectrom. 23, 278 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    B. Vekemans, K. Janssens, L. Vincze, Spectrochim. Acta Part B 50, 149 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    F. Mairinger, The ultraviolet and fluorescence study of paintings and manuscripts, in Radiation in Art and Archeometry, edited by D.C. Creagh, D.A. Bradley (Elsevier, Amsterdam, 2000)CrossRefGoogle Scholar
  26. 26.
    D. Lauwers et al., Philos. Trans. R. Soc. A 374, 20160039 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    L. Burgio, R.J.H. Clark, Spectrochim. Acta Part A 57, 1491 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    M.H. Brooker, S. Sunder, P. Taylor, Can. J. Chem. 61, 494 (1983)CrossRefGoogle Scholar
  29. 29.
    A. Coccato et al., J. Raman Spectrosc. 46, 1003 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A. Rousaki et al., Anal. Methods 9, 6435 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Samain et al., J. Phys. Chem. C 117, 9693 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Grandjean, L. Samainb, G.J. Long, Dalton Trans. 45, 18018 (2016)CrossRefGoogle Scholar
  33. 33.
    H.G.M. Edwards et al., Spectrochim. Acta Part A 61, 2273 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    B. Eifert et al., Phys. Rev. Mater. 1, 014602 (2017)CrossRefGoogle Scholar
  35. 35.
    J. Geurts et al., Thin Solid Films 121, 217 (1984)ADSCrossRefGoogle Scholar
  36. 36.
    L. Appolonia et al., Anal. Bioanal. Chem. 395, 2005 (2009)CrossRefGoogle Scholar
  37. 37.
    M. Zubair Iqbal et al., Scr. Mater. 67, 665 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ghent UniversityDepartment of ChemistryGhentBelgium
  2. 2.Ghent UniversityDepartment of ArchaeologyGhentBelgium
  3. 3.Ghent UniversityDepartment of Art, Music and Theatre SciencesGhentBelgium
  4. 4.Ghent University MuseumGhentBelgium

Personalised recommendations