Advertisement

Analysis of activation energy and melting heat transfer in MHD flow with chemical reaction

  • M. JavedEmail author
  • A. A. Alderremy
  • M. Farooq
  • Aisha Anjum
  • S. Ahmad
  • M. Y. Malik
Regular Article
  • 15 Downloads

Abstract.

This paper concentrates on aspects of melting heat transfer along with binary chemical reaction and activation energy in stagnation flow over a sheet of variable thickness saturated in a porous medium. Radiative and magnetohydrodynamic effects are taken into account. A more innovative surface condition (i.e. melting heat transfer condition) is utilized to explore the characteristics of heat transfer. By making use of adequate transformations, a nonlinear system of ordinary differential equations is achieved. The homotopic approach is used to obtain the series solution of the considered dimensionless problem. Graphical analysis of various variables is given for velocity, thermal and concentration distributions. A decreasing behavior of the concentration field is seen for the destructive chemical reaction parameter. The concentration field gets intensified for larger values of the activation energy parameter and the velocity field decreases for larger porosity parameter.

References

  1. 1.
    A.R. Bestman, Int. J. Energy Res. 14, 389 (1990)CrossRefGoogle Scholar
  2. 2.
    F.G. Awad, S. Motsa, M. Khumalo, PLoS ONE 9, e017622 (2014)Google Scholar
  3. 3.
    Z. Shafique, M. Mustafa, A. Mushtaq, Results Phys. 6, 627 (2016)CrossRefGoogle Scholar
  4. 4.
    K.A. Maleque, J. Thermodyn. 2013, 692516 (2013)Google Scholar
  5. 5.
    K.L. Hsiao, Energy 130, 486 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transfer 108, 1340 (2017)CrossRefGoogle Scholar
  7. 7.
    Z. Abbas, M. Sheikh, S. Motsa, Energy 95, 12 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Hayat, S. Ali, M. Awais, M.S. Alhuthali, Appl. Math. Mech. 36, 61 (2015)CrossRefGoogle Scholar
  9. 9.
    G.K. Ramesh, B.J. Gireesha, T. Hayat, A. Alsaedi, Alex. Eng. J. 55, 857 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Farooq, M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M. Imran Khan, J. Mol. Liq. 221, 1097 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Hayat, M.I. Khan, M. Farooq, T. Yasmeen, A. Alsaedi, J. Mol. Liq. 220, 49 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Hayat, S. Ali, M. Awais, S. Obaidat, Prog. Comput. Fluid Dyn. 13, 48 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.H. Merkin, N. Najib, N. Bachok, A. Ishak, I. Pop, J. Taiwan Inst. Chem. Eng. 74, 65 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Hayat, Z. Hussain, A. Alsaedi, S. Asghar, Adv. Powder Technol. 27, 1677 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Tien, Y. Chao, J. Appl. Meteor. 4, 523 (1965)CrossRefGoogle Scholar
  16. 16.
    S.K. Adegbie, O.K. Koriko, I.L. Animasaun, J. Niger. Math. Soc. 35, 34 (2016)CrossRefGoogle Scholar
  17. 17.
    F. Mabood, K. Das, Eur. Phys. J. Plus 131, 3 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Farooq, M. Javed, M.I. Khan, A. Anjum, T. Hayat, Results Phys. 7, 2296 (2017)CrossRefGoogle Scholar
  19. 19.
    M.R. Krishnamurthy, B.J. Gireesha, R.S.R. Gorla, B.C. Prasannakumara, J. Nanofluids 5, 502 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Mabood, A. Shafiq, T. Hayat, S. Abelman, Results Phys. 7, 31 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Hayat, Z. Hussain, M. Farooq, A. Alsaedi, J. Mol. Liq. 215, 749 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Rahman, M. Gamal, J. Nanofluids 5, 721 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Hussanan, Z. Ismail, I. Khan, A.G. Hussein, S. Shafie, Eur. Phys. J. Plus 129, 46 (2014)CrossRefGoogle Scholar
  24. 24.
    M.G. Reddy, P. Padma, B. Shankar, B.J. Gireesha, J. Nanofluids 5, 753 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Niranjan, S. Sivasankaran, M. Bhuvaneswari, Math. Prob. Eng. 2016, 4017076 (2016)CrossRefGoogle Scholar
  26. 26.
    S.J. Liao, Homotopy Analysis Method in Non-linear Differential Equations (Springer and Higher Education Press, Heidelberg, 2012)Google Scholar
  27. 27.
    M. Khan, W.A. Khan, J. Mol. Liq. 221, 651 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Hayat, M. Farooq, A. Alsaedi, Int. J. Numer. Methods Heat Fluid Flow 25, 724 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Abbasbandy, M.S. Hashemi, I. Hashim, Quaest. Math. 36, 93 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Zhu, D. Yang, L. Zheng, X. Zhang, Appl. Math. Lett. 52, 183 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    E.M. Sparrow, R.D. Cess, Radiation Heat Transfer (Hemisphere Publi Corp., Washington, DC, 1978)Google Scholar
  32. 32.
    K. Hiemenz, Dingler Polytechn. J. 326, 321 (1911)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Javed
    • 1
    Email author
  • A. A. Alderremy
    • 2
  • M. Farooq
    • 1
  • Aisha Anjum
    • 1
  • S. Ahmad
    • 1
  • M. Y. Malik
    • 2
    • 3
  1. 1.Department of MathematicsRiphah international UniversityIslamabadPakistan
  2. 2.Department of Mathematics, College of SciencesKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Department of MathematicsQuaid-I-Azam University 45320IslamabadPakistan

Personalised recommendations