Advertisement

Numerical solution to the telegraph equation via the geometric moving Kriging meshfree method

  • M. S. HashemiEmail author
Regular Article
  • 29 Downloads

Abstract.

Finding an appropriate shape function plays an important role in meshfree methods. Shape functions extracted from the moving Kriging (MK) interpolation is of recent interest for many researchers. We applied this technique to the weak form of the telegraph equation (TE) in space coordinates. Then we get a system of second-order ordinary differential equations w.r.t. the time variable. Some new variables are introduced to convert this system into a system of first-order ordinary differential equations. Then the resultant system is solved by the group preserving scheme (GPS). Examples are provided to demonstrate the power and accuracy of the proposed method for the one-dimensional hyperbolic TE.

References

  1. 1.
    P. Jordan, A. Puri, J. Appl. Phys. 85, 1273 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    J. Banasiak, J.R. Mika, Int. J. Stoch. Anal. 11, 9 (1998)Google Scholar
  3. 3.
    V. Weston, S. He, Inverse Problems 9, 789 (1993)ADSMathSciNetGoogle Scholar
  4. 4.
    F. Gao, C. Chi, Appl. Math. Comput. 187, 1272 (2007)MathSciNetGoogle Scholar
  5. 5.
    R.K. Mohanty, M.K. Jain, Numer. Methods Part. Differ. Equ. 17, 684 (2001)Google Scholar
  6. 6.
    R.K. Mohanty, M.K. Jain, U. Arora, Int. J. Comput. Math. 79, 133 (2002)MathSciNetGoogle Scholar
  7. 7.
    H.-W. Liu, L.-B. Liu, Math. Comput. Model. 49, 1985 (2009)Google Scholar
  8. 8.
    M. Dehghan, M. Lakestani, Numer. Methods Part. Differ. Equ. 25, 931 (2009)Google Scholar
  9. 9.
    A. Saadatmandi, M. Dehghan, Numer. Methods Part. Differ. Equ. 26, 239 (2010)Google Scholar
  10. 10.
    A. Mohebbi, M. Dehghan, Numer. Methods Part. Differ. Equ. 24, 1222 (2008)Google Scholar
  11. 11.
    M. Dehghan, A. Shokri, Numer. Methods Part. Differ. Equ. 24, 1080 (2008)Google Scholar
  12. 12.
    M. Dehghan, A. Shokri, Numer. Methods Part. Differ. Equ. 25, 494 (2009)Google Scholar
  13. 13.
    M.S. El-Azab, M. El-Gamel, Appl. Math. Comput. 190, 757 (2007)MathSciNetGoogle Scholar
  14. 14.
    M. Esmaeilbeigi, M.M. Hosseini, S.T. Mohyud-Din, Int. J. Phys. Sci. 6, 1517 (2011)Google Scholar
  15. 15.
    M. Dosti, A. Nazemi, B. Quartic, J. Inf. Comput. Sci. 2, 83 (2012)Google Scholar
  16. 16.
    R. Jiwari, S. Pandit, R. Mittal, Int. J. Nonlinear Sci. 13, 259 (2012)MathSciNetGoogle Scholar
  17. 17.
    L. Wei, L. Liu, H. Sun et al., Taiwanese J. Math. 22, 1509 (2018)MathSciNetGoogle Scholar
  18. 18.
    E. Shivanian, S. Abbasbandy, M.S. Alhuthali, H.H. Alsulami, Eng. Anal. Bound. Elem. 56, 98 (2015)MathSciNetGoogle Scholar
  19. 19.
    E. Shivanian, H.R. Khodabandehlo, Eur. Phys. J. Plus 129, 241 (2014)Google Scholar
  20. 20.
    R.C. Mittal, R. Bhatia, Appl. Math. Comput. 220, 496 (2013)MathSciNetGoogle Scholar
  21. 21.
    S. Sharifi, J. Rashidinia, Appl. Math. Comput. 281, 28 (2016)MathSciNetGoogle Scholar
  22. 22.
    S. Pandit, M. Kumar, S. Tiwari, Comput. Phys. Commun. 187, 83 (2015)ADSMathSciNetGoogle Scholar
  23. 23.
    M. Dehghan, A. Ghesmati, Eng. Anal. Bound. Elem. 34, 51 (2010)MathSciNetGoogle Scholar
  24. 24.
    M.S. Hashemi, D. Baleanu, J. Comput. Phys. 316, 10 (2016)ADSMathSciNetGoogle Scholar
  25. 25.
    R. Arora, N.S. Chauhan, Int. J. Appl. Comput. Math. 3, 1307 (2017)MathSciNetGoogle Scholar
  26. 26.
    W. Ma, B. Zhang, H. Ma, Appl. Math. Comput. 279, 236 (2016)MathSciNetGoogle Scholar
  27. 27.
    J. Rashidinia, M. Jokar, Appl. Anal. 95, 105 (2016)MathSciNetGoogle Scholar
  28. 28.
    J. Gómez-Aguilar, J. Electromagn. Waves Appl. 32, 695 (2018)Google Scholar
  29. 29.
    J. Lin, Y. He, S. Reutskiy, J. Lu, Eur. Phys. J. Plus 133, 290 (2018)Google Scholar
  30. 30.
    C.-S. Liu, Int. J. Non-Linear Mech. 36, 1047 (2001)ADSGoogle Scholar
  31. 31.
    H.-C. Lee, C.-S. Liu, Comput. Model. Eng. Sci. (2009)  https://doi.org/10.3970/cmes.2009.041.001
  32. 32.
    M.S. Hashemi, Commun. Nonlinear Sci. Numer. Simul. 22, 990 (2015)ADSMathSciNetGoogle Scholar
  33. 33.
    M.S. Hashemi, D. Baleanu, M. Parto-Haghighi, Rom. J. Phys. 60, 1289 (2015)Google Scholar
  34. 34.
    M.S. Hashemi, D. Baleanu, M. Parto-Haghighi, E. Darvishi, Therm. Sci. 19, 77 (2015)Google Scholar
  35. 35.
    M.S. Hashemi, D. Baleanu, J. Comput. Phys. 316, 10 (2016)ADSMathSciNetGoogle Scholar
  36. 36.
    M.S. Hashemi, E. Darvishi, D. Baleanu, Adv. Differ. Equ. 2016, 89 (2016)Google Scholar
  37. 37.
    A. Akgül, M.S. Hashemi, M. Inc, S.A. Raheem, Nonlinear Dyn. 87, 1435 (2017)Google Scholar
  38. 38.
    M.S. Hashemi, E. Darvishi, M. Inc, Int. J. Comput. Math. 95, 1654 (2018)MathSciNetGoogle Scholar
  39. 39.
    M.S. Hashemi, M. Inc, E. Karatas, E. Darvishi, Eur. Phys. J. Plus 134, 153 (2019)Google Scholar
  40. 40.
    T.Q. Bui, M.N. Nguyen, C. Zhang, Comput. Mech. 48, 175 (2011)Google Scholar
  41. 41.
    T.Q. Bui, M.N. Nguyen, Comput. Struct. 89, 380 (2011)Google Scholar
  42. 42.
    T.Q. Bui, T.N. Nguyen, H. Nguyen-Dang, Int. J. Numer. Methods Eng. 77, 1371 (2009)Google Scholar
  43. 43.
    T. Bui, M. Nguyen, C. Zhang, Eng. Anal. Bound. Elem. 35, 1038 (2011)MathSciNetGoogle Scholar
  44. 44.
    T.-V. Vu, N.-H. Nguyen, A. Khosravifard, M. Hematiyan, S. Tanaka, T.Q. Bui, Eng. Anal. Bound. Elem. 79, 1 (2017)MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Basic Science FacultyUniversity of BonabBonabIran

Personalised recommendations