Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications

  • Ahmad El-Ajou
  • Zeyad Al-Zhour
  • Moa’ath Oqielat
  • Shaher MomaniEmail author
  • Tasawar Hayat
Regular Article


In this paper, the non-linear fractional KdV-Burgers equation (KdVBE) in terms of conformable fractional derivative (CFD) is reconstituted instead of the Caputo fractional derivative and the series solution of this case is also presented by using the residual power series (RPS) method. Moreover, five important and interesting applications related to the fractional KdVBE are given and discussed in order to show the behavior of the surface graphs of the solutions. More clarifications: Firstly, we compare the solutions of the conformable fractional KdVBE and the Caputo fractional KdVBE. Secondly, in order to demonstrate the generality, potential and superiority of the RPS method, we discuss the simplicity of this method compared with other methods. Thirdly, we present the approximate solutions with graphical results of a time-CFD, space-CFD and time-space-CFD non-linear fractional KdVBEs. Finally, the results indicate that the CFD is very suitable for modeling the KdVBE and computations show that our proposed method for solving the conformable fractional KdVBE does not have mathematical requirements which implies that it is very effective as well as for providing the numerical solutions and more flexible in choosing the initial guesses approximations.


  1. 1.
    L. Wang, X. Che, Entropy 17, 6519 (2015)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Rida, A. El-Sayed, A. Arafa, Commun. Nonlinear Sci. 15, 3847 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, L. Wei, J. Fract. Calc. Appl. 2, 1 (2012)Google Scholar
  4. 4.
    D.J. Kordeweg, G. de Vries, Philos. Mag. 39, 422 (1895)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.H. Suand, C.S. Gardner, J. Math. Phys. 10, 536 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    K. Maleknejad, E. Babolian, A.J. Shaerlar, M. Jahnagir, Aust. J. Basic Appl. Sci. 5, 602 (2011)Google Scholar
  7. 7.
    Q. Wang, Chaos, Solitons Fractals 35, 843 (2008)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.K. Golmankhaneh, D. Baleanu, Rom. Rep. Phys. 63, 609 (2011)Google Scholar
  9. 9.
    A.H. Bhrawy, M.A. Zakyand, D. Baleanu, Rom. Rep. Phys. 67, 340 (2015)Google Scholar
  10. 10.
    M. Wang, Phys. Lett. A 213, 279 (1996)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.M. Hassan, Chaos, Solitons Fractals 19, 1201 (2004)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A.A. Soliman, Chaos, Solitons Fractals 41, 1034 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A.A. Soliman, Chaos, Solitons Fractals 29, 294 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Kaya, Appl. Math. Comput. 152, 279 (2004)MathSciNetGoogle Scholar
  15. 15.
    S. Momani, Chaos, Solitons Fractals 28, 930 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Rong-Jun, C. Yu-Min, Chin. Phys. B 20, 70206 (2011)CrossRefGoogle Scholar
  17. 17.
    H.N.A. Ismail, T.M. Rageh, G.S.E. Salem, Appl. Math. Comput. 234, 58 (2014)MathSciNetGoogle Scholar
  18. 18.
    A. El-Ajou, Q. Abu Arqub, S. Momani, J. Comput. Phys. 293, 81 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. El-Ajou, O. Abu Arqub, Z. Al-Zhour, S. Momani, Entropy 15, 5305 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    O. Abu Arqub, A. El-Ajou, Z. Al-Zhour, S. Momani, Entropy 16, 471 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    O. Abu Arqub, A. El-Ajou, S. Momani, J. Comput. Phys. 293, 385 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. El-Ajou, O. Abu Arqub, S. Momani, Appl. Math. Comput. 257, 119 (2015)MathSciNetGoogle Scholar
  23. 23.
    Abu Arqub, J. Adv. Res. Appl. Math. 5, 31 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. El-Ajou, O. Abu Arqub, S. Momani, Appl. Math. Comput. 256, 851 (2015)MathSciNetGoogle Scholar
  25. 25.
    Y. Zhang, A. Kumar, S. Kumar, D. Baleanu, X.J. Yang, J. Nonlinear Sci. Appl. 9, 5821 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Kumar, S. Kumar, S.P. Yan, Fundam. Inform. 151, 213 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Kumar, S. Kumar, Nonlinear Eng. 5, 235 (2016)ADSGoogle Scholar
  28. 28.
    S. Kumar, A. Kumar, D. Baleanu, Nonlinear Dyn. 85, 699 (2016)CrossRefGoogle Scholar
  29. 29.
    V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems (Cambridge Academic, Cambridge, 2009)Google Scholar
  30. 30.
    B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, New York, 2003)Google Scholar
  31. 31.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Yverdon, 1993)Google Scholar
  32. 32.
    M. Inc, J. Math. Anal. Appl. 345, 476 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Momani, Z. Odibat, A. Alawneh, Numer. Methods Partial Differ. Equ. 24, 262 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Safari, D.D. Ganji, M. Moslemi, Comput. Math. Appl. 58, 2091 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Momani, Math. Comput. Simul. 70, 110 (2005)CrossRefGoogle Scholar
  36. 36.
    Q. Wang, Appl. Math. Comput. 190, 1795 (2007)MathSciNetGoogle Scholar
  37. 37.
    L. Song, H. Zhang, Phys. Lett. A 367, 88 (2007)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    R. Khalil, M.A. Horani, A. Yousef, M. Sababheh, J. Comput. Appl. Math. 264, 65 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    T. Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Abu Hammad, R. Khalil, Inter. J. Pure Appl. Math. 94, 215 (2014)CrossRefGoogle Scholar
  41. 41.
    Z. Ayati, J. Biazar, M. Ilei, Int. J. Appl. Math. Res. 6, 49 (2017)CrossRefGoogle Scholar
  42. 42.
    L. Wang, J. Fu, Chin. Phy. B 25, 4501 (2016)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceAl Balqa Applied UniversitySaltJordan
  2. 2.Department of Basic Engineering Sciences, College of EngineeringImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.College of Humanities and SciencesAjman UniversityAjmanUnited Arab Emirates
  4. 4.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Department of Mathematics, Faculty of ScienceUniversity of JordanAmmanJordan
  6. 6.Department of Mathematics, Faculty of ScienceQuaid-I-Azam UniversityIslamabadPakistan

Personalised recommendations