Advertisement

A novel numerical method for solving the 2-D time fractional cable equation

  • N. H. SweilamEmail author
  • S. M. AL-Mekhlafi
Regular Article
  • 35 Downloads

Abstract.

In this paper, an efficient numerical scheme is constructed to approximate the solutions of the two-dimensional linear and nonlinear fractional cable equation. The fractional derivative is defined in the Atangana-Baleanu-Caputo sense. The nonstandard implicit compact finite difference method is presented to solve numerically the proposed equation. Special attention is given to studying the stability analysis of the numerical technique. Moreover, the truncation error is analyzed. Finally, two numerical test examples and comparative studies are presented. The numerical experiments demonstrate the high accuracy of the new method.

References

  1. 1.
    R. Klages, G. Radons, I.M. Sokolov (Editors), Anomalous Transport: Foundations and Applications, in Nonlinear and Complex Systems (Wiley-VCH, 2008)Google Scholar
  2. 2.
    J. Liu, H. Li, Y. Liu, J. Appl. Math. Comput. 52, 345 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, Calif, 1999)Google Scholar
  4. 4.
    R. Hilfer (Editor), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)Google Scholar
  5. 5.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, North-Holland Math. Stud. 204, 1 (2006)CrossRefGoogle Scholar
  6. 6.
    R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, J. Magn. Reson. 190, 255 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D. Baleanu, Phys. Scr. 2009, 014006 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  9. 9.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, Adv. Differ. Equ. 2018, 230 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Atangana, Physica A 505, 688 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Atangana, J. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  14. 14.
    B.S.T. Alkahtani, A. Atangana, I. Koca, J. Nonlinear Sci. Appl. 10, 3191 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    X.-J. Yang, H.M. Srivastava, J.A. Tenreiro Machado, Therm. Sci. 20, 753 (2016)CrossRefGoogle Scholar
  16. 16.
    A.-M. Yang, Y. Han, J. Li, W.-X. Liu, Therm. Sci. 20, 717 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Saad, T. Alkahtania, I. Kocab, A. Atangana, J. Nonlinear Sci. Appl. 10, 4231 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    X.-J. Yang, J.A. Tenreiro Machado, J.J. Nieto, Fund. Inform. 151, 63 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T.A.M. Langlans, B. Henry, S. Wearne, SIAM J. Appl. Math. 71, 1168 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    B. Henry, T.A.M. Langlands, S.L. Wearne, Phys. Rev. Lett. 100, 128103 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    F. Liu, Q. Yang, I. Turner, J. Comput. Nonlinear Dyn. 6, 011009 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Hu, L. Zhang, Appl. Math. Model. 36, 4027 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    A.T. Balasim, N.H.M. Ali, AIP Conf. Proc. 1870, 040050 (2017)CrossRefGoogle Scholar
  24. 24.
    A.H. Bhrawy, M.A. Zaky, Nonlinear Dyn. 80, 101 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Yu, X. Jiang, J. Sci. Comput. 68, 252 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Zhang, X. Yang, X. Han, Comput. Math. Appl. 68, 1710 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Cui, J. Comput. Phys. 228, 7792 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer, 1998)Google Scholar
  29. 29.
    R. Du, W.R. Cao, Z.Z. Sun, Appl. Math. Model. 34, 2998 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J.A. Abraham, G. Gilberto, M. Benito, Math. Comput. Simul. 121, 48 (2016)CrossRefGoogle Scholar
  31. 31.
    A.J. Arenas, G. González-Parra, B.M. Caraballo, Math. Comput. Model. 57, 1663 (2013)CrossRefGoogle Scholar
  32. 32.
    H.A. Obaid, R. Ouifki, K.C. Patidar, Int. J. Appl. Math. Comput. Sci. 23, 357 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R.E. Mickens, J. Differ. Equ. Appl. 8, 823 (2002)CrossRefGoogle Scholar
  34. 34.
    R.E. Mickens, Applications of Nonstandard Finite Difference Schemes (World Scientifc, 2000)Google Scholar
  35. 35.
    M. Díaz-Rodríguez, G. González-Parra, A.J. Arenas, Int. J. Numer. Methods Biomed. Eng. 27, 1211 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    R.E. Mickens, Methods Part. Differ. Equ. Fractals 15, 201 (1999)CrossRefGoogle Scholar
  37. 37.
    G. González-Parra, A.J. Arenas, B.M. Chen-Charpentier, Math. Comput. Model. 54, 1030 (2010)CrossRefGoogle Scholar
  38. 38.
    N.H. Sweilam, S.M. AL-Mekhlafi, J. Adv. Res. 7, 271 (2016)CrossRefGoogle Scholar
  39. 39.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, NY, USA, 1974)Google Scholar
  40. 40.
    B.P. Demidovich, I.A. Maron, Computational Mathematics (Mir Publishers, Moscow, 1987)Google Scholar
  41. 41.
    G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, second ed. (Oxford University Press, 1978)Google Scholar
  42. 42.
    R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems (InterScience Publishers, John Wiley, New York, 1967)Google Scholar
  43. 43.
    S.B. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    N.H. Sweilam, M.M. Abou Hasan, Eur. Phys. J. Plus 132, 212 (2017)CrossRefGoogle Scholar
  45. 45.
    N.H. Sweilam, S.M. AL-Mekhlafi, D. Baleanu, J. Adv. Res. 17, 125 (2019)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Mathematics, Faculty of EducationSana’a UniversitySana’aYemen

Personalised recommendations