Advertisement

Research on statistical algorithm optimization of fractional differential equations of quantum mechanics in ecological compensation

  • Wei Zhao
  • Kaijun Leng
  • Jinbo ChenEmail author
  • Yuanze Jiao
  • Qiong Zhao
Regular Article
  • 16 Downloads

Abstract.

Aiming at the shortcomings of the current fractional calculus Fourier transform applied to image processing, it is necessary to artificially specify the differential order. This paper proposes an adaptive fractional differential, which can be applied to the aerobics view with higher real-time requirements. The adaptive fractional differential derivative Fourier transform selection can represent the fractal dimension of texture detail complexity as a parameter adaptive method to determine the order of the differential, but the commonly used fractional box dimension calculation method has relatively rough results. Its algorithmic shortcomings and an improved algorithm are proposed to make the fractal dimension, obtained by the improved algorithm, more accurate. An image reconstruction application based on the improved adaptive tenor small frame sparse regularization algorithm was developed, which verified that feature matching can be performed with corner points. Experiments show that the improved fractal-based adaptive fractional-order differential Fourier transform constructed in this paper has better experimental results than the integer-order differential one in edge detection and reconstruction of aerobics view images.

References

  1. 1.
    S. Rana, S. Bhattacharya, J. Pal et al., Physica A 392, 3610 (2013)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.H. Saleh, S.M. Amer, M.A. Shaalan, Int. J. Comput. Appl. 74, 44 (2013)Google Scholar
  3. 3.
    S.D. Purohit, Adv. Appl. Math. Mech. 5, 639 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Garra, E. Orsingher, F. Polito, J. Stat. Phys. 155, 777 (2014)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Gu, Y. Yu, W. Hu, Nonlinear Dyn. 84, 1 (2015)ADSGoogle Scholar
  6. 6.
    R. Kamocki, C. Obczyński, J. Math. Phys. 55, 1238 (2014)CrossRefGoogle Scholar
  7. 7.
    Ji-Huan He, Int. J. Theor. Phys. 53, 3698 (2014)CrossRefGoogle Scholar
  8. 8.
    K.J. Leng, Y. Bi, L.B. Jing, H.C. Fu, Future Gener. Comput. Syst. 86, 641 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Li, K.J. Leng, Q.K. Qing, S.X. Zhu, Transp. Res. Part E 118, 272 (2018)CrossRefGoogle Scholar
  10. 10.
    N. Nyamoradi, M. Javidi, Dyn. Contin. Discr. Impuls. Syst. 2, 189 (2014)Google Scholar
  11. 11.
    Y.J. Shen, S.F. Wen, X.H. Li et al., Nonlinear Dyn. 85, 1457 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Mirzazadeh, Pramana 85, 1 (2014)Google Scholar
  13. 13.
    K.J. Leng, S. Wen, X.J. Hu, L. Pan, J. Intell. Fuzzy Syst. 33, 2801 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Jianping, J. Math. Phys. 55, 1 (2014)Google Scholar
  15. 15.
    K.V. Zhukovsky, Moscow Univ. Phys. Bull. 71, 237 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Ahmed, S.B. Hussein, Appl. Math. Nonlinear Sci. 3, 331 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Takacs, Appl. Math. Nonlinear Sci. 3, 403 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R.F. Carlos, Appl. Math. Nonlinear Sci. 3, 23 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Business AdministrationHubei University of EconomicsWuhanChina
  2. 2.National Academy of Economics StrategyChina Academy of Social SciencesBeijingChina
  3. 3.School of Information Management and StatisticsHubei University of EconomicsWuhanChina

Personalised recommendations