Prediction of the California bearing ratio (CBR) of compacted soils by using GMDH-type neural network

  • T. Fikret KurnazEmail author
  • Yilmaz Kaya
Regular Article


The California bearing ratio (CBR) is an important parameter in defining the bearing capacity of various soil structures, such as earth dams, road fillings and airport pavements. However, determination of the CBR value of compacted soils from tests takes a relatively long time and leads to a demanding experimental working program in the laboratory. This study is aimed to predict the CBR value of compacted soils by using the group method of data handling (GMDH) model with a type of artificial neural networks (ANN). The results were also compared with multiple linear regression (MLR) analysis and different ANN models. The selected variables for the developed models are gravel content (GC), sand content (SC) fine content (FC), liquid limit (LL), plasticity index (PI), optimum moisture content (OMC) and maximum dry density (MDD) of compacted soils. Many trials were carried out with different numbers of layers and different numbers of neurons in the hidden layer in GMDH model and with different training algorithms in ANN models. The results indicate that the GMDH model has better success in the estimation of the CBR value compared to both the MLR and the different types of ANN models.


  1. 1.
    A. Chegenizadeh, H.R. Nikraz, CBR Test on Reinforced Clay, in The 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (PCSMGE), the 64th Canadian Geotechnical Conference (CGC), Oct 2, Toronto, Ontario, Canada (Canadian Geotechnical Society, 2011)Google Scholar
  2. 2.
    J.E. Bowles, Engineering Properties of Soils and Their Measurements (McGraw-Hill Book Company, New York, 1970)Google Scholar
  3. 3.
    B. Caglarer, Road construction technique, General Directorate of Highways of the Ministry of Public Works and Settlement, Publication no. 259, Ankara, Turkey (1986)Google Scholar
  4. 4.
    M. Aytekin, Experimental Soil Mechanics (Technical Publisher, Ankara, 2004) pp. 483--559Google Scholar
  5. 5.
    TS 5744, In Situ Measurement of Soil Properties in Civil Engineering (Turkish Standards Institute, 1988)Google Scholar
  6. 6.
    M.M. Zumrawi, IACSIT Int. J. Eng. Technol. 6, 439 (2014)CrossRefGoogle Scholar
  7. 7.
    W.R. Day, Soil Testing Manual: Procedures, Classification Data, and Sampling Practices (McGraw-Hi//Edecation, 2001)Google Scholar
  8. 8.
    TS 1900-2, Soil Laboratory Experiments in Civil Engineering - Part 2: Determination of Mechanical Properties (Turkish Standards Institute, Ankara, 2006)Google Scholar
  9. 9.
    M. Zumrawi, Prediction of CBR from index properties of cohesive soils, in Advances in Civil Engineering and Building Materials, edited by S.-Y. Chang, S.K. Al Bahar, J. Zhao (CRC Press, Boca Raton, 2012) pp. 561--565Google Scholar
  10. 10.
    W.P.M. Black, Geotechnique 12, 271 (1962)CrossRefGoogle Scholar
  11. 11.
    K.B. Agarwal, K.D. Ghanekar, Prediction of CBR from plasticity characteristics of soil, in Proceedings of the 2nd southeast Asian conference on soil engineering, Singapore, June 11--15 (Asian Institute of Technology, Bangkok, 1970) pp. 571--576Google Scholar
  12. 12.
    M. Linveh, Transp. Res. Rec. 1219, 56 (1989)Google Scholar
  13. 13.
    D.J. Stephens, J. Civ. Eng. S. Afr. 32, 523 (1990)Google Scholar
  14. 14.
    T. Al-Refeai, A. Al-suhaibani, King Saud U. J. Eng. Sci. 9, 191 (1997)Google Scholar
  15. 15.
    M.W. Kin, California Bearing Ratio Correlation with Soil Index Properties, Master degree Project, Faculty of Civil Engineering, University Technology, Malaysia (2006)Google Scholar
  16. 16.
    C.N.V. Satyanarayana Reddy, K. Pavani, Mechanically stabilized soils-regression equation for CBR evaluation, in Proceedings of the Indian geotechnical conference, Chennai, India (2006) pp. 731--734Google Scholar
  17. 17.
    P. Vinod, C. Reena, Highw. Res. J. IRC 1, 89 (2008)Google Scholar
  18. 18.
    S.R. Patel, M.D. Desai, CBR predicted by index properties for alluvial soils of South Gujarat, Dec. 16--18, in Proceedings of the Indian Geotechnical Conference, India (2010) pp. 79--82Google Scholar
  19. 19.
    G.V. Ramasubbarao, G. Siva Sankar, Jordan J. Civ. Eng. 7, 354 (2013)Google Scholar
  20. 20.
    M.H. Alawi, M.I. Rajab, Road Mater. Pavement Des. 14, 211 (2013)CrossRefGoogle Scholar
  21. 21.
    V. Chandrakar, R.K. Yadav, Int. Res. J. Eng. Technol. 3, 772 (2016)Google Scholar
  22. 22.
    A.O. Samson, Int. J. Sci. Eng. Res. 8, 1460 (2017)Google Scholar
  23. 23.
    F.P. Nejad, M.B. Jaksa, M. Kakhi, B.A. McCabe, Comput. Geotech. 36, 1125 (2009)CrossRefGoogle Scholar
  24. 24.
    J.A. Abdalla, M.F. Attom, R. Hawileh, Environ. Earth Sci. 73, 5463 (2015)CrossRefGoogle Scholar
  25. 25.
    M.J. Sulewska, Comput. Assist. Mech. Eng. Sci. 18, 231 (2011)Google Scholar
  26. 26.
    Z. Chik, Q.A. Aljanabi, A. Kasa, M.R. Taha, Arab. J. Geosci. 7, 4877 (2014)CrossRefGoogle Scholar
  27. 27.
    F. Saboya, M.G. Alves, W.D. Pinto, Eng. Geol. 86, 211 (2006)CrossRefGoogle Scholar
  28. 28.
    W. Li, S. Mei, S. Zai, S. Zhao, X. Liang, Int. J. Rock Mech. Mining Sci. 43, 503 (2006)CrossRefGoogle Scholar
  29. 29.
    H.J. Oh, B. Pradhan, Comput. Geosci. 37, 1264 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    H. Jalalifara, S. Mojedifar, A.A. Sahebi, H. Nezamabadi-pour, Comput. Geotech. 38, 783 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Padmini, K. Ilamparuthi, K.P. Sudheer, Comput. Geotech. 35, 33 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Levasseur, Y. Malecot, M. Boulon, E. Flavigny, Int. J. Numer. Anal. Methods Geomech. 32, 189 (2008)CrossRefGoogle Scholar
  33. 33.
    P. McCombie, P. Wilkinson, Comput. Geotech. 29, 699 (2002)CrossRefGoogle Scholar
  34. 34.
    P. Samui, Comput. Geotech. 35, 419 (2008)CrossRefGoogle Scholar
  35. 35.
    P. Samui, D.P. Kothari, Sci. Iran. 18, 53 (2011)CrossRefGoogle Scholar
  36. 36.
    B. Yildirim, O. Gunaydin, Expert Syst. Appl. 38, 6381 (2011)CrossRefGoogle Scholar
  37. 37.
    T. Taskiran, Adv. Eng. Softw. 41, 886 (2010)CrossRefGoogle Scholar
  38. 38.
    C. Venkatasubramanian, G. Dhinakaran, Int. J. Civ. Struct. Eng. 2, 605 (2011)Google Scholar
  39. 39.
    S. Bhatt, P.K. Jain, Am. Int. J. Res. Sci. Technol. Eng. Math. 8, 156 (2014)Google Scholar
  40. 40.
    A.G. Ivakhnenko, Sov. Autom. Control Avtomot. 9, 21 (1976)Google Scholar
  41. 41.
    A. Kordnaeij, F. Kalantary, B. Kordtabar, H. Mola-Abasi, Soils Found. 55, 1335 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Ardakani, A. Kordnaeij, Eur. J. Environ. Civ. Eng. 23, 449 (2019)CrossRefGoogle Scholar
  43. 43.
    M. Hassanlourad, A. Ardakani, A. Kordnaeij, H. Mola-Abasi, Eur. Phys. J. Plus 132, 357 (2017)CrossRefGoogle Scholar
  44. 44.
    R.A. Jirdehi, H.T. Mamoudan, H.H. Sarkaleh, Appl. Appl. Math. 9, 528 (2014)Google Scholar
  45. 45.
    N.R. Draper, H. Smith, Applied Regression Analysis, 2nd ed. (John Wiley & Sons Inc, NY, 1981)Google Scholar
  46. 46.
    S. Haykin, Neural Network: A Comprehensive Foundation (MacMillan College Publishing Co., New York, 1994)Google Scholar
  47. 47.
    V.A. Vissikirsky, V.S. Stepashko, I.K. Kalavrouziotis, P.A. Drakatos, Instrum. Sci. Technol. 33, 229 (2005)CrossRefGoogle Scholar
  48. 48.
    H. Ghanadzadeh, M. Ganji, S. Fallahi, Appl. Math. Model. 36, 4096 (2012)CrossRefGoogle Scholar
  49. 49.
    W. Zhu, J. Wang, W. Zhang, D. Sun, Atmos. Environ. 51, 29 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mersin UniversityVocational School of Technical Sciences, Department of Transportation ServicesMersinTurkey
  2. 2.Siirt UniversityDepartment of Computer Engineering, Faculty of Engineering and ArchitectureSiirtTurkey

Personalised recommendations