Advertisement

Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method

  • M. Abu-Shady
  • A. N. IkotEmail author
Regular Article
  • 11 Downloads

Abstract.

The N-radial Schrödinger equation is analytically solved by using the SUSYQM method, in which the heavy-quarkonia potential is introduced at finite temperature and baryon chemical potential. The energy eigenvalue is calculated in the N-dimensional space. The obtained results show that the binding energy strongly decreases with increasing temperature and is slightly sensitive for changing baryon chemical potential up to 0.6GeV at higher values of temperatures. We employed the nonperturbative corrections to the leading-order of the Debye mass at finite baryon chemical potential. We found that the binding energy is more dissociated when the nonperturbative corrections are included with the leading-order term of the Debye mass in both hot and dense media. A comparison with other works, such as the lattice parameterized of the Debye mass is discussed; thus, the present potential with the SUSYQM method provides satisfying results for the description of the dissociation of binding energy for heavy quarkonia in hot and dense media.

References

  1. 1.
    E. Witten, Nucl. Phys. B 188, 513 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Motavali, A. Rostami, Prog. Electromagn. Res. C 1, 131 (2008)CrossRefGoogle Scholar
  4. 4.
    A.N. Ikot, S.E. Etuk, B.H. Yazarloo, S. Zarrinkamar, H. Hassanabadi, Few-Body Syst. 56, 41 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A.N. Ikot, H. Hassanabdi, H.P. Obong, Y.E. Chad-Umoren, C.N. Isonguyo, B.H. Yazarloo, Chin. Phys. B 23, 120303 (2014)CrossRefGoogle Scholar
  6. 6.
    A.N. Ikot, H. Hassanabdi, E. Maghsoodi, S. Zarrinkamar, N. Salehi, Phys. Part. Nucl. Lett. 11, 443 (2014)CrossRefGoogle Scholar
  7. 7.
    A.N. Ikot, H.P. Obong, H. Hassanabadi, N. Salehi, O.S. Thomas, Ind. J. Phys. 89, 649 (2015)CrossRefGoogle Scholar
  8. 8.
    C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, X.L. Peng, Phys. Lett. A 379, 132 (2015)ADSGoogle Scholar
  9. 9.
    A. Suprami, C. Cari, B.N. Pratiwi, J. Phys. Conf. Ser. 710, 012026 (2016)CrossRefGoogle Scholar
  10. 10.
    C.S. Jia, T. Chen, S. He, Phys. Lett. A 377, 682 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    U.S. Okorie, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, Rev. Mex. Fis. 64, 608 (2018)CrossRefGoogle Scholar
  12. 12.
    E.M. Khokha, M. Abu-Shady, T.A. Abdel-Karim, Int. J. Theor. Appl. Math. 2, 86 (2016)Google Scholar
  13. 13.
    A.N. Ikot, O.A. Awoga, A.D. Antia, Chin. Phys. B 22, 020304 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Arda, R. Sever, Commun. Theor. Phys. 58, 27 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Abu-Shady, J. Egypt. Math. Soc. 25, 86 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)Google Scholar
  17. 17.
    A.N. Ikot, O.A. Awoga, H. Hassanabadi, E. Maghsoodi, Commun. Theor. Phys. 6, 113 (2014)Google Scholar
  18. 18.
    N.V. Maksimenko, S.M. Kuchin, Rus. J. Phys. 54, 57 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    F.M. Fernandez, J. Phys. A 37, 6173 (2004)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordreht, 2007)Google Scholar
  22. 22.
    A. Tas, O. Aydogdu, M. Salti, J. Kor. Phys. Soc. 70, 897 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)Google Scholar
  24. 24.
    P. Faccioli, C. Loureno, M. Arajo, V. Knnz, I. Krtschmer, J. Seixas, Phys. Lett. B 773, 476 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    T. Song, J. Aichelin, E. Bratkovskaya, Phys. Rev. C 96, 014907 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    ATLAS Collaboration (S.T. Araya et al.), Nucl. Part. Phys. Proc. 393, 289 (2017)Google Scholar
  27. 27.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 84, 054912 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D 69, 094507 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    T. Umeda, K. Nomura, H. Matsufuru, Eur. Phys. J. C 39, 9 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    H. Iida, T. Doi, N. Ishii, H. Suganuma, K. Tsumura, Phys. Rev. D 74, 074502 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    A. Mocsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S. Digal, P. Petreczky, H. Satz, Phys. Lett. B 514, 57 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    W.M. Alberico, A. Beraudo, A. De Pace, A. Molinari, Phys. Rev. D 72, 114011 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    C.Y. Wong, H.W. Crater, Phys. Rev. D 75, 034505 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    W.M. Alberico, A. Beraudo, A.D. Pace, A. Molinari, Phys. Rev. D 75, 074009 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    V. Agotiya, V. Chandra, B.K. Patra, Phys. Rev. C 80, 025210 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    L. Thakur, N. Haque, U. Kakade, B.K. Patra, Phys. Rev. D 88, 054022 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    L. Thakur, U. Kakade, B.K. Patra, Phys. Rev. D 89, 094020 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    U. Kakade, B.K. Patra, L. Thakur, Int. J. Mod. Phys. A 30, 1550043 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    V.K. Agotiya, V. Chandra, M.Y. Jamal, I. Nilima, Phys. Rev. D 94, 094006 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    L. Thakur, N. Haque, H. Mishra, Phys. Rev. D 95, 036014 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    M.Y. Jamal, I. Nilima, V. Chandra, V.K. Agotiyab, Phys. Rev. D 97, 094033 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    M. Abu-Shady, T.A. Abdel-Karim, E.M. Khokha, Adv. High Energy Phys. 2018, 7356843 (2018)Google Scholar
  46. 46.
    M. Abu-Shady, E.M. Khokha, Adv. High Energy Phys. 2018, 032041 (2018)Google Scholar
  47. 47.
    U. Kakade, B.K. Patra, Phys. Rev. C 92, 024901 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    M. Abu-Shady, H.M. Mansour, A.I. Ahmadov, Adv. High Energy Phys. 2019, 4785615 (2019)CrossRefGoogle Scholar
  49. 49.
    T. Das, A. Arda, Adv. High Energy Phys. 2015, 137038 (2015)CrossRefGoogle Scholar
  50. 50.
    M. Abu-Shady, Inter. J. Appl. Math. Theor. Phys. 2, 16 (2016)Google Scholar
  51. 51.
    M. Moring, S. Ejir, O. Kaczmarek, F. Karsch, E. Laermann, PoSLAT 2005, 193 (2006)Google Scholar
  52. 52.
    C. Hong, L. Bou, H. Ze-jun, Chin. Phys. Lett. 15, 787 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    D. Blaschke, O. Kaczmarek, E. Laermann, V. Yudichev, Eur. Phys. J. C 43, 81 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    P.K. Srivastava, O.S.K. Chaturvedi, L. Thakur, Eur. Phys. J. C 78, 440 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of ScienceMenoufia UniversityShibin El KomEgypt
  2. 2.Department of PhysicsUniversity of Port HarcourtPort HarcourtNigeria

Personalised recommendations