Advertisement

The generalized Brans-Dicke theory and its cosmology

  • Jianbo LuEmail author
  • Yabo Wu
  • Weiqiang Yang
  • Molin Liu
  • Xin Zhao
Regular Article
  • 11 Downloads

Abstract.

The generalized Brans-Dicke (GBD) theory is studied in this paper. The GBD theory is obtained by generalizing the Ricci scalar R to an arbitrary function f (R) in the original Brans-Dicke (BD) action. An interesting property was found in the GBD theory, for example, it can naturally solve the problem of the \( \gamma\) value emerging in f (R) modified gravity (i.e. the inconsistent problem between the observational \( \gamma\) value and the theoretical \( \gamma\) value), without introducing the so-called chameleon mechanism. In this paper, we derive the cosmological equations and study the cosmology in the GBD theory. The cosmological solutions show that the GBD model can pass through the test of the observations, such as the observational Hubble data. Compared with other theories, it can be found that the GBD theory has some other interesting properties or solve some problems existing in other theories. 1) It is well known that the f (R) theory is equivalent to the BD theory with a potential (abbreviated as BDV) for taking a specific value of the BD parameter \( \omega\) = 0 , where the specific choice \( \omega\) = 0 for the BD parameter is quite exceptional, and it is hard to understand the corresponding absence of the kinetic term for the field. However, for the GBD theory, it is similar to the coupled scalar field model, where both fields in the GBD theory have the non-disappeared dynamical effect. 2) One knows that in the coupled scalar field quintom model, it is required to include both the canonical quintessence field and the non-canonical phantom field, in order to make the state parameter cross over w = - 1 , while several fundamental problems are associated with the phantom field, such as the problem of negative kinetic term, the fine-tuning problem, etc. On the other hand, in the GBD model, the state parameter of geometrical dark energy can cross over the phantom boundary w = - 1 as in the quintom model, without bearing the problems existing in the quintom model. 3) The GBD theory tends to investigate the physics from the viewpoint of geometry, while the BDV, or the two scalar fields quintom model tend to solve physical problems from the viewpoint of matter. It is possible that several special characteristics of scalar fields could be revealed through studies of geometrical gravity in the GBD theory. As an example, we investigate the potential V(\( \phi\)) of the BD scalar field, and an effective form of V(\( \phi\)) could be given by studying the GBD theory. Moreover, it seems that a viable condition for the BD theory could be found, i.e. the BD parameter should be \( \omega\) > 0 for f > 0 , if we assume that the effective form of the BD potential can be approximately written as a popular square function of \( \phi\) .

References

  1. 1.
    J. Lu, G. Chee, JHEP 05, 024 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Q.G. Huang, Eur. Phys. J. C 74, 2964 (2014) arXiv:1403.0655ADSCrossRefGoogle Scholar
  3. 3.
    M. Hohmann, L. Jarv, P. Kuusk, E. Randla, O. Vilson, Phys. Rev. D 94, 124015 (2016) arXiv:1607.02356ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017) arXiv:1705.11098ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. de la Cruz-Dombriz, E. Elizalde, S.D. Odintsov, D. Saez-Gomez, JCAP 05, 060 (2016) arXiv:1603.05537ADSCrossRefGoogle Scholar
  6. 6.
    T.P. Sotiriou, Class. Quantum Grav. 23, 5117 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) arXiv:0805.1726ADSCrossRefGoogle Scholar
  9. 9.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Biesiada, B. Malec, Mon. Not. R. Astron. Soc. 350, 644 (2004) astro-ph/0303489ADSCrossRefGoogle Scholar
  11. 11.
    O.G. Benvenuto et al., Phys. Rev. D 69, 082002 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    J.P.W. Verbiest et al., Astrophys. J. 679, 675 (2008) arXiv:0801.2589ADSCrossRefGoogle Scholar
  13. 13.
    E. Gaztanaga et al., Phys. Rev. D 65, 023506 (2002) arXiv:astro-ph/0109299ADSCrossRefGoogle Scholar
  14. 14.
    S.E. Thorsett, Phys. Rev. Lett. 77, 1432 (1996) astro-ph/9607003ADSCrossRefGoogle Scholar
  15. 15.
    K. Bamba, D. Momeni, R. Myrzakulov, Int. J. Geom. Methods Mod. Phys. 12, 1550106 (2015) arXiv:1404.4255MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Qiang, Y. Ma, M. Han, D. Yu, Phys. Rev. D 71, 061501 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    L.X. Xu, W.B. Li, J.B. Lu, Eur. Phys. J. C 60, 135 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    N. Banerjee, D. Pavon, Phys. Rev. D 63, 043504 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A.D. Felice, S. Tsujikawa, JCAP 07, 024 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Lu, S. Gao, Y. Zhao, Y. Wu, Eur. Phys. J. Plus 127, 154 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Roy, N. Banerjee, Phys. Rev. D 95, 064048 (2017) arXiv:1702.02169ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    L.X. Xu, W.B. Li, J.B. Lu, Eur. Phys. J. C 60, 135 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    O. Hrycyna, M. Szydlowski, JCAP 12, 016 (2013) arXiv:1310.1961ADSCrossRefGoogle Scholar
  27. 27.
    H. Ozer, O. Delice, Class. Quantum Grav. 35, 065002 (2018) arXiv:1708.05900ADSCrossRefGoogle Scholar
  28. 28.
    R.C. Freitas, S.V.B. Goncalves, Phys. Lett. B 703, 209 (2011) arXiv:1111.5045ADSCrossRefGoogle Scholar
  29. 29.
    X. Zhang, J. Yu, T. Liu, W. Zhao, A. Wang, Phys. Rev. D 95, 124008 (2017) arXiv:1703.09853ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    S.K. Tripathy, D. Behera, B. Mishra, Eur. Phys. J. C 75, 149 (2015) arXiv:1410.3156ADSCrossRefGoogle Scholar
  31. 31.
    G. Papagiannopoulos, J.D. Barrow, S. Basilakos, A. Giacomini, A. Paliathanasis, Phys. Rev. D 95, 024021 (2017) arXiv:1611.00667ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Sharif, Rubab Manzoor, Eur. Phys. J. C 76, 330 (2016) arXiv:1606.00758ADSCrossRefGoogle Scholar
  33. 33.
    J. Lu, Y. Wang, arXiv:1904.01734Google Scholar
  34. 34.
    J.C. Hwang, Class. Quantum Grav. 7, 1613 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Hwang, H. Noh, Phys. Rev. D 54, 1460 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Hwang, H. Noh, Phys. Rev. D 71, 063536 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    S.D. Odintsov, V.K. Oikonomou, Nucl. Phys. B 929, 79 (2018) arXiv:1801.10529ADSCrossRefGoogle Scholar
  38. 38.
    Y. Huang, Y. Gong, D. Liang, Z. Yi, Eur. Phys. J. C 75, 351 (2015) arXiv:1504.01271ADSCrossRefGoogle Scholar
  39. 39.
    B. Boisseau, Phys. Rev. D 83, 043521 (2011) arXiv:1011.2915ADSCrossRefGoogle Scholar
  40. 40.
    B. Boisseau, H. Giacomini, D. Polarski, A.A. Starobinsky, JCAP 07, 002 (2015) arXiv:1504.07927ADSCrossRefGoogle Scholar
  41. 41.
    T. Chiba, M. Yamaguchi, JCAP 10, 040 (2013) arXiv:1308.1142ADSCrossRefGoogle Scholar
  42. 42.
    D.B. Guenther, L.M. Krauss, P. Demarque, Astrophys. J. 498, 871 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93, 261101 (2004) arXiv:gr-qc/0411113ADSCrossRefGoogle Scholar
  44. 44.
    A.G. Riess et al., Astrophys. J. 699, 539 (2009) arXiv:0905.0695ADSCrossRefGoogle Scholar
  45. 45.
    P. Zhang, M. Liguori, R. Bean, S. Dodelson, Phys. Rev. Lett. 99, 141302 (2007) arXiv:0704.1932ADSCrossRefGoogle Scholar
  46. 46.
    E.V. Linder, Phys. Rev. D 80, 123528 (2009) arXiv:0905.2962ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    K. Bamba, C.G. Geng, C.C. Lee, JCAP 08, 021 (2010) arXiv:1005.4574ADSCrossRefGoogle Scholar
  48. 48.
    C. Zhang, H. Zhang, S. Yuan, S. Liu, T.J. Zhang, Y.C. Sun, Res. Astron. Astrophys. 14, 1221 (2014) arXiv:1207.4541ADSCrossRefGoogle Scholar
  49. 49.
    R. Jimenez, L. Verde, T. Treu, D. Stern, Astrophys. J. 593, 622 (2003) arXiv:0302560ADSCrossRefGoogle Scholar
  50. 50.
    J. Simon, L. Verde, R. Jimenez, Gravit. Cosmol. 71, 123001 (2005) arXiv:0412269Google Scholar
  51. 51.
    M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, JCAP 07, 53 (2012) arXiv:1201.6658ADSCrossRefGoogle Scholar
  52. 52.
    E. Gaztanaga, A. Cabrse, L. Hui, arXiv:0807.3551Google Scholar
  53. 53.
    X. Xu, A.J. Cuesta, N. Padmanabhan, D.J. Eisenstein, C.K. McBride, Mon. Not. R. Astron. Soc. 431, 2834 (2013) arXiv:1206.6732ADSCrossRefGoogle Scholar
  54. 54.
    M. Moresco, L. Pozzetti, A. Cimatti et al., JCAP 5, 014 (2016) arXiv:1601.01701ADSCrossRefGoogle Scholar
  55. 55.
    C. Blake, S. Brough, M. Colless et al., Mon. Not. R. Astron. Soc. 425, 405 (2012) arXiv:1204.3674ADSCrossRefGoogle Scholar
  56. 56.
    D. Stern, R. Jimenez, L. Verde et al., J. Cosmol. Astropart. Phys. 2, 8 (2010) arXiv:0907.3149ADSCrossRefGoogle Scholar
  57. 57.
    L. Samushia, B.A. Reid, M. White et al., Mon. Not. R. Astron. Soc. 429, 1514 (2013) arXiv:1206.5309ADSCrossRefGoogle Scholar
  58. 58.
    M. Moresco, Mon. Not. R. Astron. Soc. Lett. 450, L16 (2015) arXiv:1503.01116ADSCrossRefGoogle Scholar
  59. 59.
    R.G. Cai, S.J. Wang, Phys. Rev. D 93, 023515 (2016) arXiv:1511.00627ADSCrossRefGoogle Scholar
  60. 60.
    J.J. Guo, J.F. Zhang, Y.H. Li, D.Z. He, X. Zhang, Sci. China-Phys. Mech. Astron. 61, 030011 (2018) arXiv:1710.03068ADSCrossRefGoogle Scholar
  61. 61.
    T. Yang, Z.K. Guo, R.G. Cai, Phys. Rev. D 91, 123533 (2015) arXiv:1505.04443ADSCrossRefGoogle Scholar
  62. 62.
    H. Wei, X.B. Zou, H.Y. Li, D.Z. Xue, Eur. Phys. J. C 77, 14 (2017) arXiv:1605.04571ADSCrossRefGoogle Scholar
  63. 63.
    Q.G. Huang, Eur. Phys. J. C 74, 2964 (2014) arXiv:1403.0655ADSCrossRefGoogle Scholar
  64. 64.
    Y. Fan, P.X. Wu, H.W. Yu, Phys. Rev. D 92, 083529 (2015) arXiv:1510.04010ADSCrossRefGoogle Scholar
  65. 65.
    X. Zhang, Sci. China-Phys. Mech. Astron. 60, 060431 (2017) arXiv:1703.00651ADSCrossRefGoogle Scholar
  66. 66.
    L.X. Xu, Phys. Rev. D 87, 043503 (2013) arXiv:1210.7413ADSCrossRefGoogle Scholar
  67. 67.
    S. Li, Y.G. Ma, Eur. Phys. J. C 68, 227 (2010) arXiv:1004.4350ADSCrossRefGoogle Scholar
  68. 68.
    L. Feng, J.F. Zhang, X. Zhang, Sci. China-Phys. Mech. Astron. 61, 050411 (2018) arXiv:1706.06913ADSCrossRefGoogle Scholar
  69. 69.
    L.X. Xu, Phys. Rev. D 87, 043525 (2013) arXiv:1302.2291ADSCrossRefGoogle Scholar
  70. 70.
    J.B. Lu, G.Y. Chee, JHEP 05, 024 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    M. Hohmann, L. Jarv, P. Kuusk, E. Randla, O. Vilson, Phys. Rev. D 94, 124015 (2016) arXiv:1607.02356ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017) arXiv:1705.11098ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    A. de la Cruz-Dombriz, E. Elizalde, S.D. Odintsov, D. Saez-Gomez, JCAP 05, 060 (2016) arXiv:1603.05537ADSCrossRefGoogle Scholar
  74. 74.
    J. Lu, D. Geng, L. Xu, Y. Wu, M. Liu, JHEP 02, 071 (2015) arXiv:1312.0779ADSCrossRefGoogle Scholar
  75. 75.
    J. Lu, M. Liu, Y. Wu, Y. Wang, W. Yang, Eur. Phys. J. C 76, 679 (2016) arXiv:1606.02987ADSCrossRefGoogle Scholar
  76. 76.
    B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005) arXiv:astro-ph/0404224ADSCrossRefGoogle Scholar
  77. 77.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669, 255 (2008) arXiv:0812.2272ADSCrossRefGoogle Scholar
  80. 80.
    C. Corda, Eur. Phys. J. C 65, 257 (2010) arXiv:1007.4077ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsLiaoning Normal UniversityDalianChina
  2. 2.College of Physics and Electronic EngineeringXinyang Normal UniversityXinyangChina

Personalised recommendations