Advertisement

Equivalence principle violation at finite temperature in scalar-tensor gravity

  • Massimo Blasone
  • Salvatore CapozzielloEmail author
  • Gaetano Lambiase
  • Luciano Petruzziello
Review
  • 16 Downloads
Part of the following topical collections:
  1. Focus Point on Tests of General Relativity and Alternative Gravity Theories

Abstract.

We analyze possible violations of the equivalence principle in scalar-tensor gravity at finite temperature T. We first present an approach where the equivalence principle violation is achieved within the framework of quantum field theory. Then, we rely on an alternative approach first proposed by Gasperini, which leads to the same outcome obtained in the framework of quantum field theory (one-loop corrections) at finite T. Finally, we exhibit the application of the above formalism both to a generic diagonal metric, cast in spherical coordinates, and to the Brans-Dicke theory. In the last case, we show that it is possible to put a significant constraint on the free parameter of the theory by means of experimental bounds on the equivalence principle.

References

  1. 1.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman Ed., San Francisco, 1973)Google Scholar
  2. 2.
    M. Zych, Č. Brukner, Nat. Phys. 14, 1027 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, G.M. Tino, Nat. Commun. 8, 5529 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Capozziello, G. Lambiase, Frascati Phys. Ser. 58, 17 (2014)Google Scholar
  6. 6.
    G.K. Chakravarty, S. Mohanty, G. Lambiase, Int. J. Mod. Phys. D 26, 1730023 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Kanazawa, A. Yoshioka, G. Lambiase, G. Vilasi, Int. J. Geom. Methods Mod. Phys. 15, 1850176 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    L. Buoninfante, A.S. Cornell, G. Harmsen, A.S. Koshelev, G. Lambiase, J. Marto, A. Mazumdar, Phys. Rev. D 98, 084041 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    G. Lambiase, S. Mohanty, A. Stabile, Eur. Phys. J. C 78, 350 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    L. Buoninfante, A.S. Koshelev, G. Lambiase, A. Mazumdar, JCAP 09, 034 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    S. Capozziello, G. Lambiase, Phys. Lett. B 750, 344 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    S. Capozziello, G. Lambiase, M. Sakellariadou, A. Stabile, Phys. Rev. D 91, 044012 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    G. Lambiase, Phys. Rev. D 90, 064050 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    G. Lambiase, S. Mohanty, A.R. Prasanna, Int. J. Mod. Phys. D 22, 1330030 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Capozziello, M. De Laurentis, G. Lambiase, Phys. Lett. B 715, 1 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    G. Lambiase, S. Mohanty, G. Scarpetta, JCAP 07, 019 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    T. Chiba, Phys. Lett. B 575, 1 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    P. Jordan, Schwerkraft und Weltall (Friedrich Vieweg und Sohn, Braunschweig, 1955)Google Scholar
  21. 21.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)  https://doi.org/10.1017/CBO9780511535093
  23. 23.
    J.F. Donoghue, B.R. Holstein, R.W. Robinett, Phys. Rev. D 30, 2561 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    F. Donoghue, B.R. Holstein, R.W. Robinett, Gen. Relativ. Gravit. 17, 207 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    L. Hui, A. Nicolis, C. Stubbs, Phys. Rev. D 80, 104002 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C. Armendariz-Picon, R. Penco, Phys. Rev. D 85, 044052 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F. Scardigli, G. Lambiase, E. Vagenas, Phys. Lett. B 767, 242 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)ADSCrossRefGoogle Scholar
  29. 29.
    M. Gasperini, Phys. Rev. D 36, 617 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    A. Papapetrou, Proc. R. Soc. London A 209, 248 (1951)ADSCrossRefGoogle Scholar
  31. 31.
    S. Baessler, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, U. Schmidt, H.E. Swanson, Phys. Rev. Lett. 83, 3585 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    A. Barros, C. Romero, Phys. Lett. A 245, 31 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    C.M. Will, N. Yunes, Class. Quantum Grav. 21, 4367 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    K.G. Arun, A. Pai, Int. J. Mod. Phys. D 22, 1341012 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Nobili, A. Anselmi, Phys. Lett. A 382, 2205 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    S. Capozziello, G. Lambiase, Gen. Relativ. Gravit. 34, 1097 (2002)CrossRefGoogle Scholar
  37. 37.
    G.Z. Adunas, E. Rodriguez-Milla, D.V. Ahluwalia, Phys. Lett. B 485, 215 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    S. Capozziello, G. Lambiase, Mod. Phys. Lett. A 14, 2193 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    G. Papini, G. Scarpetta, V. Bozza, A. Feoli, G. Lambiase, Phys. Lett. A 300, 603 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    V. Bozza, S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 40, 849 (2001)CrossRefGoogle Scholar
  41. 41.
    M. Blasone, G. Lambiase, G.G. Luciano, Phys. Rev. D 96, 025023 (2017)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Blasone, G. Lambiase, G.G. Luciano, J. Phys.: Conf. Ser. 956, 012021 (2018)Google Scholar
  43. 43.
    M. Blasone, G. Lambiase, G.G. Luciano, L. Petruzziello, Phys. Rev. D 97, 105008 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    M. Blasone, G. Lambiase, G.G. Luciano, L. Petruzziello, PoS CORFU 2017, 198 (2018)Google Scholar
  45. 45.
    G. Cozzella, S.A. Fulling, A.G.S. Landulfo, G.E.A. Matsas, D.A.T. Vanzella, Phys. Rev. D 97, 105022 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    G. Lambiase, A. Stabile, A. Stabile, Phys. Rev. D 95, 084019 (2017)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Blasone, G. Lambiase, L. Petruzziello, A. Stabile, Eur. Phys. J. C 78, 976 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    L. Buoninfante, G. Lambiase, L. Petruzziello, A. Stabile, arXiv:1811.12261 [gr-qc]Google Scholar
  49. 49.
    D. Singleton, S. Wilburn, Phys. Rev. Lett. 107, 081102 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Phys. Rev. Lett. 108, 049001 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    D. Singleton, S. Wilburn, Phys. Rev. Lett. 108, 049002 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Massimo Blasone
    • 1
    • 2
  • Salvatore Capozziello
    • 3
    • 4
    • 5
    • 6
    Email author
  • Gaetano Lambiase
    • 1
    • 2
  • Luciano Petruzziello
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di SalernoFisciano (SA)Italy
  2. 2.INFN, Sezione di NapoliGruppo collegato di SalernoFisciano (SA)Italy
  3. 3.Dipartimento di FisicaUniversità di Napoli “Federico II”NapoliItaly
  4. 4.INFNSezione di NapoliNapoliItaly
  5. 5.Tomsk State Pedagogical UniversityTomskRussia
  6. 6.Laboratory for Theoretical CosmologyTomsk State University of Control Systems and Radioelectronics (TUSUR)TomskRussia

Personalised recommendations