Advertisement

New exact solutions of generalized convection-reaction-diffusion equation

  • P. PrakashEmail author
Regular Article
  • 28 Downloads

Abstract.

In this paper, we explain how to construct a complete classification of invariant subspaces for the generalized nonlinear convection-reaction-diffusion equation. Also, we have explicitly shown that the convection-reaction-diffusion equation admits more than one invariant subspaces in different dimensions which in turn helps to derive more than one different types of exact solution.

References

  1. 1.
    B.H. Gilding, R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection-Reaction (Birkhauser, 2004)Google Scholar
  2. 2.
    L.A. Richards, Physica 1, 318 (1931)Google Scholar
  3. 3.
    J.D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1989)Google Scholar
  4. 4.
    P. Glansdorff, I.R. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley Interscience, New York, 1971)Google Scholar
  5. 5.
    H. Haken, Synergetics: An Introduction (Springer-Verlag, Berlin, New York, 1978)Google Scholar
  6. 6.
    R. Cherniha, M. Serov, I. Rassokha, J. Math. Anal. Appl. 342, 1363 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    P.A. Clarkson, E.L. Mansfield, Physica D 70, 250 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    V.A. Vladimirov, Cz. Maczka, Chaos, Solitons Fractals 44, 677 (2011)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Jia, W. Xu, X.Zhao, Z. Li, J. Math. Anal. Appl. 339, 982 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Sharifi, J. Rashidinia, J. King Saud Univ.: Science (2019)  https://doi.org/10.1016/j.jksus.2018.10.004
  11. 11.
    G.R. Barrenechea, A.H. Poza, H. Yorston, Comput. Methods Appl. Mech. Eng. 339, 389 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hayek, Appl. Math. Comput. 218, 2407 (2011)MathSciNetGoogle Scholar
  13. 13.
    V.A. Galaktionov, S.R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics (Chapman and Hall/CRC, London, 2007)Google Scholar
  14. 14.
    J.R. King, Physica D 64, 35 (1993)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S.R. Svirshchevskii, Phys. Lett. A 199, 344 (1995)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S.R. Svirshchevskii, Commun. Nonlinear Sci. Numer. Simul. 9, 105 (2004)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Hirota, B. Grammaticos, A. Ramani, J. Math. Phys. 27, 1499 (1986)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    W.X. Ma, Nonlinear Anal. 63, e2461 (2005)CrossRefGoogle Scholar
  19. 19.
    W.X. Ma, E.G. Fan, Comput. Math. Appl. 61, 950 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    W.X. Ma, Sci. China Math. 55, 1769 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    W.X. Ma, Y. Liu, Commun. Nonlinear Sci. Numer. Simul. 17, 3795 (2012)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Ye, W.X. Ma, S. Shen, D. Zhang, J. Nonlinear Math. Phys. 21, 132 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    C.Z. Qu, C.R. Zhu, J. Phys. A: Math. Theor. 42, 475201 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R. Sahadevan, P. Prakash, Chaos, Solitons Fractals 104, 107 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Liu, Appl. Math. Lett. 83, 164 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A.D. Polyanin, A.I. Zhurov, Appl. Math. Lett. 37, 43 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Sahadevan, P. Prakash, Commun. Nonlinear Sci. Numer. Simul. 42, 158 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Sahadevan, P. Prakash, Nonlinear Dyn. 85, 659 (2016)CrossRefGoogle Scholar
  29. 29.
    W. Rui, Appl. Math. Comput. 339, 158 (2018)MathSciNetGoogle Scholar
  30. 30.
    R. Sahadevan, T. Bakkyaraj, Fract. Calc. Appl. Anal. 18, 146 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    P. Artale Harris, R. Garra, Nonlinear Stud. 20, 471 (2013)MathSciNetGoogle Scholar
  32. 32.
    S.F. Shen, C.Z. Qu, Y.Y. Jin, L.N. Ji, Chin. Ann. Math. Ser. B 33, 161 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C.R. Zhu, C.Z. Qu, J. Math. Phys. 52, 043507 (2011)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    J. Song, S. Shen, Y. Jin, J. Zhang, Commun. Nonlinear Sci. Numer. Simul. 18, 2984 (2013)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M.S. Hashemi, Chaos, Solitions Fractals 107, 161 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    W.X. Ma, Y. Zhou, J. Differ. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    W.X. Ma, J. Li, C.M. Khalique, Complexity 2018, 9059858 (2018)Google Scholar
  38. 38.
    S.T. Chen, W.X. Ma, Comput. Math. Appl. 76, 1680 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    W.X. Ma, J. Appl. Anal. Comput. 9, 1 (2019)MathSciNetGoogle Scholar
  40. 40.
    W.X. Ma, X. Yong, H.Q. Zhang, Comput. Math. Appl. 75, 289 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J.Y. Yang, W.X. Ma, Z. Qin, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    J.Y. Yang, W.X. Ma, Z. Qin, East Asian J. Appl. Math. 8, 224 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    W.X. Ma, J. Geom. Phys. 133, 10 (2018)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    W.X. Ma, East Asian J. Appl. Math. 9, 185 (2019)MathSciNetCrossRefGoogle Scholar
  45. 45.
    W.X. Ma, Acta Math. Sci. B 39, 498 (2019)Google Scholar
  46. 46.
    W.X. Ma, Phys. Lett. A 301, 35 (2002)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    V.A. Dorodnitsyn, Ufimsk. Math. J. 4, 186 (2012)Google Scholar
  48. 48.
    W.X. Ma, Y. Zhang, Y.N. Tang, J. Tu, Appl. Math. Comput. 218, 7174 (2012)MathSciNetGoogle Scholar
  49. 49.
    W.X. Ma, Integrability, in Encyclopedia of Nonlinear Science, edited by A. Scott (Taylor & Francis, New York, 2005) pp. 250--253Google Scholar
  50. 50.
    W.X. Ma, T.W. Huang, Y. Zhang, Phys. Scr. 82, 065003 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations