Advertisement

Thermal and optical properties of two molecular potentials

  • Mahdi Eshghi
  • Ramazan SeverEmail author
  • Sameer M. Ikhdair
Regular Article
  • 16 Downloads

Abstract.

We solve the Schrödinger wave equation for the generalized Morse and cusp molecular potential models. In the limit of high temperature we, first, need to calculate the canonical partition function which is basically used to study the behavior of the thermodynamic functions. Based on this, we further calculate the thermodynamic quantities, such as the free energy, the entropy, the mean energy and the specific heat. Their behavior with the temperature has been investigated. In addition, the susceptibility for two level systems is also found by applying the incident time-dependent field.

References

  1. 1.
    A. Suparmi, C. Cari, U.A. Deta, Chin. Phys. B 23, 090304 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M. Aslanzadeh, A.A. Rajabi, Eur. Phys. J. A 50, 151 (2014)CrossRefGoogle Scholar
  3. 3.
    G.-F. Wei, S.-H. Dong, Phys. Lett. B 686, 288 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    X.-C. Zhang, Q.-W. Liu, C.-S. Jia, L.-Z. Wang, Phys. Lett. A 340, 59 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    A. Durmus, A. Ozfidan, J. Math. Phys. 55, 102105 (2014)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Barakat, S. Abdalla, J. Math. Phys. 54, 102105 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Mod. Phys. Lett. A 26, 2703 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H.P. Obong, A.N. Ikot, I.O. Owate, J. Kor. Phys. Soc. 66, 867 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H. Panahi, L. Jahangiri, Ann. Phys. 354, 306 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M. Eshghi, S.M. Ikhdair, Math. Methods Appl. Sci. 37, 2829 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Eshghi, S.M. Ikhdair, Z. Naturforsch. 69a, 111 (2014)ADSGoogle Scholar
  12. 12.
    S.-H. Dong, R. Lemus, A. Frank, Int. J. Quantum Chem. 86, 433 (2002)CrossRefGoogle Scholar
  13. 13.
    S.-H. Dong, Cand. J. Phys. 80, 129 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S.-H. Dong, G.-H. Sun, Phys. Lett. A 314, 261 (2003)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Yu, S.-H. Dong, G.-H. Sun, Phys. Lett. A 322, 290 (2004)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W.-C. Qiang, S.-H. Dong, Phys. Lett. A 363, 169 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    G.-H. Sun, S.-H. Dong, Commun. Theor. Phys. 58, 815 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S.-H. Dong, Factorization Method in Quantum Mechanics (Springer, 2007)Google Scholar
  19. 19.
    S.M. Ikhdair, J. Math. Phys. 51, 023525 (2010)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Yu, S.-H. Dong, A. Antellon, M. Lozada-Cassou, Eur. Phys. J. C 45, 525 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    C.A. Onate, J.O. Ojonubah, Int. J. Mod. Phys. E 24, 155020-1 (2015)CrossRefGoogle Scholar
  22. 22.
    S.M. Ikhdair, B.J. Falaye, Chem. Phys. 421, 84 (2013)CrossRefGoogle Scholar
  23. 23.
    D.-L. Xiao, M.-Y. Lai, X.-Y. Pan, Chin. Phys. B 25, 010307 (2016)CrossRefGoogle Scholar
  24. 24.
    V. Sanos, R.V. Maluf, C.A.S. Almeida, Ann. Phys. 349, 402 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    S.-H. Dong, M. Lozada-Cassou, J. Yu, F. Jimenez-Angeles, A.L. Riverra, Int. J. Quantum Chem. 107, 366 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    S.-H. Dong, M. Cruz-Irisson, J. Math. Chem. 50, 881 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    P.M. Morse, Phys. Rev. 34, 57 (1929)ADSCrossRefGoogle Scholar
  28. 28.
    L.H. Zhang, X.P. Li, C.S. Jia, Int. J. Theor. Phys. 111, 1870 (2011)Google Scholar
  29. 29.
    C.L. Pekeris, Phys. Rev. 45, 98 (1934)ADSCrossRefGoogle Scholar
  30. 30.
    S. Flugge, Practical quantum mechanics (Springer, Berlin, 1974)Google Scholar
  31. 31.
    G.E. Anderws, R. Askey, R. Roy, Special Functions (Cambridge University Press, London, 2000)Google Scholar
  32. 32.
    M. Abramovitz, I.A. Astegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, NY, 1972) p. 295Google Scholar
  33. 33.
    C. Berkdemir, J. Han, Chem. Phys. Lett. 409, 203 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    O. Bayrak, I. Boztosunt, arxiv:nucl-th/0604042v1 (2006)Google Scholar
  35. 35.
    R.K. Pathria, Statistical Mechanics, 1st ed. (Pergamon Press, Oxford, 1972)Google Scholar
  36. 36.
    J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, MA, 1994)Google Scholar
  37. 37.
    R.W. Boyd, Nonlinear Optics (Academic Press, Elsevier, San Diego, 2008)Google Scholar
  38. 38.
    V.M. Villalba, W. Greiner, Phys. Rev. A 67, 052707 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    A.N. Ikot, H. Hassanabadi, N. Salehi, H.P. Obong, M.C. Onyeaju, Ind. J. Phys. 89, 1221 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mahdi Eshghi
    • 1
  • Ramazan Sever
    • 2
    Email author
  • Sameer M. Ikhdair
    • 3
    • 4
  1. 1.Department of PhysicsImam Hossein Comprehensive UniversityTehranIran
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  3. 3.Department of Physics, Faculty of ScienceAn-Najah National UniversityWest BankPalestine
  4. 4.Department of Electrical EngineeringNear East UniversityNorthern CyprusTurkey

Personalised recommendations