A classical remark on the compatibility of inlet velocity and pressure singularities: Finite-element visualization

  • Khalil Ur RehmanEmail author
  • M. S. Alqarni
  • R. Mahmood
  • N. Kousar
  • M. Y. Malik
Regular Article


In this article we consider a smooth channel with infinite length. A circular cylinder is placed in the channel as an obstacle. A fluid satisfying Newton’s law of viscosity is taken in the channel with two different classes of velocity profiles at the inlet namely, a linear (constant) velocity profile and a parabolic profile. The mathematical model is structured by using the fundamental laws involved in the field of fluid rheology. Since the flow-describing differential equations are nonlinear in nature, a computational scheme is executed to report the primitive flow field quantities that is the pressure and the velocity. The numerical method used in this case is the finite-element method. The obtained outcomes are given by way of graphical trends. For a clear insight both the contour plots and line graphs are added. Further, the benchmark quantities namely, the drag and the lift coefficients are evaluated around the outer surface of the obstacle through the line integration. For accuracy the numerical data subject to both the drag and the lift coefficients is recorded up to nine different refinement mesh levels. Finally, the findings are concluded with the potential remark that the flow in a channel (having no-slip condition at both the lower and upper walls) with the parabolic velocity profile initiated at the inlet is the more realistic approach as compared to the linear (constant) profile being considered at the inlet.


  1. 1.
    Nabil T.M. EL-Dabe, S. MG El-Mohandis, Fluid Dyn. Res. 15, 313 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    A. Pinarbasi, A. Liakopoulos, J. Non-Newtonian Fluid Mech. 57, 227 (1995)CrossRefGoogle Scholar
  3. 3.
    A.N. Beris, R. Sureshkumar, Chem. Eng. Sci. 51, 1451 (1996)CrossRefGoogle Scholar
  4. 4.
    R. Drouot, M. Berrajaa, Int. J. Eng. Sci. 34, 1101 (1996)CrossRefGoogle Scholar
  5. 5.
    P. Laure, H. Le Meur, Y. Demay, J.C. Saut, S. Stéphane, J. Non-Newtonian Fluid Mech. 71, 1 (1997)CrossRefGoogle Scholar
  6. 6.
    K.P. Travis, B.D. Todd, D.J. Evans, Physica A 240, 315 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    P. Jay, J.M. Piau, N. El Kissi, J. Cizeron, J. Non-Newtonian Fluid Mech. 77, 233 (1998)CrossRefGoogle Scholar
  8. 8.
    R. Maynard, A. Smontara, J.C. Lasjaunias, Physica B 263, 678 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    C.E. Siewert, J. Comput. Phys. 160, 470 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M. Maiellaro, A. Labianca, Int. J. Eng. Sci. 40, 1053 (2002)CrossRefGoogle Scholar
  11. 11.
    F.T. Akyildiz, Int. J. Eng. Sci. 40, 859 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Hayat, M. Khan, M. Ayub, J. Math. Anal. Appl. 298, 225 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nabil T.M. EL-Dabe, M.F. El-Sabbagh, M. AS El-Sayed, Fluid Dyn. Res. 38, 699 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S.A. Suslov, T.D. Tran, J. Non-Newtonian Fluid Mech. 154, 170 (2008)CrossRefGoogle Scholar
  15. 15.
    S.M. Fielding, H.J. Wilson, J. Non-Newtonian Fluid Mech. 165, 196 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Danish, S. Kumar, S. Kumar, Commun. Non-Linear Sci. Numer. Simul. 17, 1089 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    P.B. Mucha, T. Piasecki, J. Math. Pures Appl. 102, 338 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Z. Yongbin, Int. J. Heat Mass Transfer 95, 243 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Yiolanda, C.G. Georgios, J. Non-Newtonian Fluid Mech. 250, 1 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S.K. Yiallourou, C.G. Georgios, Eur. J. Mech.-B 72, 87 (2018)CrossRefGoogle Scholar
  21. 21.
    R. Liu, Z. Ding, K.X. Hu, J. Non-Newtonian Fluid Mech. 251, 132 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    C.H.K. Williamson, Ann. Rev. Fluid Mech. 28, 477 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    B.N. Rajani, A. Kandasamy, S. Majumdar, Appl. Math. Modell. 33, 1228 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Kanaris, G. Dimokratis, K. Stavros, Phys. Fluids 23, 064106 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S. Hussain, S. Friedhelm, S.S. Turek, Int. J. Numer. Methods 73, 927 (2013)CrossRefGoogle Scholar
  26. 26.
    C.S. Desai, J.F. Abel, Introduction to the Finite Element Method: A Numerical Method for Engineering Analysis (Van Nostrand Reinhold, 1971)Google Scholar
  27. 27.
    H. Bang, W.K. Young, The finite element method using MATLAB (CRC Press, 2000)Google Scholar
  28. 28.
    C.A. Felippa, Introduction to finite element methods (University of Colorado, USA, 2001)Google Scholar
  29. 29.
    P.J. Matuszyk, S. Marcin, P. Maciej, Proc. Comput. Sci. 51, 2883 (2015)CrossRefGoogle Scholar
  30. 30.
    B. Zhao, Int. Commun. Heat Mass Transf. 74, 63 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Lin, L. Peng, L. Jun, Z. Pengchong, Acta Mech. Solida Sin. 30, 445 (2017)CrossRefGoogle Scholar
  32. 32.
    M.A. Badri, P. Jolivet, B. Rousseau, Y. Favennec, Int. J. Comput. Phys. 360, 74 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Khalil Ur Rehman
    • 2
    Email author
  • M. S. Alqarni
    • 1
  • R. Mahmood
    • 2
  • N. Kousar
    • 2
  • M. Y. Malik
    • 1
  1. 1.Department of Mathematics, College of SciencesKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of MathematicsAir UniversityIslamabadPakistan

Personalised recommendations