Quantum parametric resonance of a dissipative oscillator: fading and persistent memory in the long-time evolution

  • Loris FerrariEmail author
Regular Article


The evolution of a quantum oscillator, with periodically varying frequency and damping, is studied in the two cases of parametric resonance (PR) producing a limited, or unlimited stretching of the wave function. The different asymptotic behaviors of the energy distribution, show the non-trivial interplay between PR and the initial quantum state. In the first case, the oscillator’s mean energy tends asymptotically to a fully classical value, independently of the initial state, with vanishing relative quantum fluctuations. In the second case, the memory of the initial state persists over arbitrary long time scales, both in the mean value and in the large quantum fluctuations of the energy.


  1. 1.
    D.J. Figueroa, F. Torrenti, J. Cosmol. Astropart. Phys. 02, 001 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    A. Rezig, M. Oualy, Adv. Prod. Eng. Manag. 7, 237 (2012)Google Scholar
  3. 3.
    W. Zhang, R. Baskaran, K. Turner, Appl. Phys. Lett. 82, 130 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    H. Eckardt, B. Stolz, Simulation of a Parametric Oscillator Circuit: Part 2 (2013) available at,,
  5. 5.
    O. Ide, J. Appl. Phys. 77, 6015 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    N.B. Caldwell, M.F. Daqaq, Appl. Phys. Lett. 110, 093903 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Lin-An Wu, H.J. Kimble, J.L. Hall, Huifa Wu, Phys. Rev. Lett. 57, 2520 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    Jeong-Young Ji, Hyun-Hee Jung, Jong-Woong Park, Kwan-Sup Soh, Phys. Rev. A 56, 4441 (1997)ADSGoogle Scholar
  9. 9.
    S.E. Pollack, D. Dries, R.G. Hulet, K.M.F. Magalhes, E.A. Henn, E.R.F. Ramos, M.A. Caracanhas, V.S. Bagnato, Phys. Rev. A 81, 053627 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    R. Onofrio, Phys. Usp. 59, 1129 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    E.I. Butikov, Eur. J. Phys. 26, 157 (2005)CrossRefGoogle Scholar
  12. 12.
    L. Ferrari, Phys. Rev. B 56, 593 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    L. Ferrari, Parametric Resonance in a dissipative system à la Krönig-Penney, arXiv:1812.00189Google Scholar
  14. 14.
    S. Weigert, J. Phys. A 35, 4169 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jiushu Shao, J. Theor. Comput. Chem. 07, 629 (2008)CrossRefGoogle Scholar
  16. 16.
    O.V. Man’ko, Nuovo Cimento B 111, 1111 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    B.R. Mollow, R.J. Glauber, Phys. Rev. 160, 1076 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    C.M.A. Dantas, I.A. Pedrosa, B. Baseia, Phys. Rev. A 45, 1320 (1992)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    I.A. Pedrosa, Phys. Rev. A 55, 3219 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Janussis, B.S. Bartzis, Phys. Lett. A 129, 263 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    H.R. Lewis, Phys. Rev. Lett. 18, 510 (1967)ADSCrossRefGoogle Scholar
  22. 22.
    H.R. Lewis, W.B. Reisenfeld, J. Math. Phys. 10, 1458 (1969)ADSCrossRefGoogle Scholar
  23. 23.
    J. Guerrero, F. Lopez-Ruiz, Phys. Scr. 90, 074046 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Dodonov, V.I. Man’ko, Invariants and Evolution of Non Stationary Quantum Systems (Nova Science, 1989)Google Scholar
  25. 25.
    C. Degli Esposti Boschi, L. Ferrari, H.R. Lewis, Phys. Rev. A 61, 010101 (1999)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Astronomy (DIFA) of the University of BolognaBolognaItaly

Personalised recommendations