Postbuckling of pressure-loaded FG-GRC laminated cylindrical panels resting on elastic foundations in thermal environments

  • Hui-Shen ShenEmail author
  • Y. Xiang
Regular Article


This paper investigates the postbuckling behavior of graphene-reinforced composite (GRC) laminated cylindrical panels under lateral pressure loading. The panels are placed in a thermal environment and are supported by a Pasternak-type elastic foundation. The GRC layers are arranged in a piece-wise functionally graded (FG) pattern in the panel thickness direction. The anisotropic and temperature dependent material properties of GRC layers are predicted using the extended Halpin-Tsai micromechanical model. The higher order shear deformation theory and the von Kármán strain-displacement relationships are employed to obtain the governing differential equations of the panels which also include the effects of temperature variation and panel-foundation interaction. The postbuckling of a cylindrical panel involves the boundary layer effect and the effects of the initial geometric imperfections. The nonlinear prebuckling deformations of the panel are also considered in the solution process. The postbuckling equilibrium path for the perfect and geometrically imperfect GRC laminated cylindrical panels are obtained by applying a singular perturbation technique along with a two-step perturbation approach. It is observed that, in the present examples, the considered FG-GRC laminated cylindrical panels subjected to lateral pressure experience pre-buckling deformation and the postbuckling equilibrium paths of the panels are no longer of the bifurcation type.


  1. 1.
    H.-S. Shen, A.Y.T. Leung, J. Eng. Mech. ASCE 129, 414 (2003)CrossRefGoogle Scholar
  2. 2.
    N.D. Duc, H.V. Tung, Compos. Struct. 92, 1664 (2010)CrossRefGoogle Scholar
  3. 3.
    N.D. Duc, T.Q. Quan, Mech. Compos. Mater. 48, 435 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    N.D. Duc, T.Q. Quan, Mech. Compos. Mater. 49, 493 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N.D. Duc, T.Q. Quan, Compos. Struct. 106, 590 (2013)CrossRefGoogle Scholar
  6. 6.
    H.V. Tung, N.D. Duc, Appl. Math. Model. 38, 2848 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    N.D. Duc, N.D. Tuan, T.Q. Quan, N.V. Quyen, Thin-Walled Struct. 96, 155 (2015)CrossRefGoogle Scholar
  8. 8.
    H.-S. Shen, Int. J. Mech. Sci. 89, 453 (2014)CrossRefGoogle Scholar
  9. 9.
    H.-S. Shen, H. Wang, Thin-Walled Struct. 100, 124 (2016)CrossRefGoogle Scholar
  10. 10.
    H.-S. Shen, Eng. Struct. 122, 174 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    H.-S. Shen, Y. Xiang, Int. J. Mech. Sci. 107, 225 (2016)CrossRefGoogle Scholar
  12. 12.
    H.V. Tung, L.T.N. Trang, Acta Mech. 229, 1949 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer 52, 5 (2011)CrossRefGoogle Scholar
  14. 14.
    F. Liu, P.M. Ming, J. Li, Phys. Rev. B 76, 064120 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, Physica B 405, 1301 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    C.D. Reddy, S. Rajendran, K.M. Liew, Nanotechnol. 17, 864 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    L. Shen, H.-S. Shen, C.-L. Zhang, Mater. Des. 31, 4445 (2010)CrossRefGoogle Scholar
  18. 18.
    Z. Xu, J. Comput. Theor. Nanosci. 6, 625 (2009)CrossRefGoogle Scholar
  19. 19.
    G.I. Giannopoulos, I.G. Kallivokas, Finite Elements Analy. Des. 90, 31 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang, D. Chen, Macromolecules 43, 9411 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, ACS Nano 5, 2392 (2011)CrossRefGoogle Scholar
  22. 22.
    N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang et al., Adv. Mater. 26, 5480 (2014)CrossRefGoogle Scholar
  23. 23.
    M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, ACS Nano 3, 3884 (2009)CrossRefGoogle Scholar
  24. 24.
    M.A. Milani, D. González, R. Quijada, N.R.S. Basso, M.L. Cerrada, D.S. Azambuja, G.B. Galland, Compos. Sci. Technol. 84, 1 (2013)CrossRefGoogle Scholar
  25. 25.
    H.-S. Shen, Functionally Graded Materials Nonlinear Analysis of Plates and Shells (CRC Press, Boca Raton, 2009)Google Scholar
  26. 26.
    N.D. Duc, Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells (Vietnam National University Press, Hanoi, 2014)Google Scholar
  27. 27.
    H.-S. Shen, Compos. Struct. 91, 9 (2009)CrossRefGoogle Scholar
  28. 28.
    H.-S. Shen, Y. Xiang, F. Lin, D. Hui, Compos. B Eng. 119, 67 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Song, J. Yang, S. Kitipornchai, W. Zhu, Int. J. Mech. Sci. 131-132, 345 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Sahmani, M.M. Aghdam, T. Rabczuk, Compos. Struct. 198, 51 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Sahmani, M.M. Aghdam, Eur. Phys. J. Plus 132, 490 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Guo, S. Cao, T. Yang, Y. Chen, Compos. B Eng. 154, 216 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.Q. Wang, C. Ye, J.W. Zu, Aerospace Sci. Technol. 85, 359 (2019)CrossRefGoogle Scholar
  34. 34.
    Y. Kiani, Thin-Walled Struct. 125, 211 (2018)CrossRefGoogle Scholar
  35. 35.
    Y. Kiani, M. Mirzaei, Compos. Struct. 186, 114 (2018)CrossRefGoogle Scholar
  36. 36.
    Z. Lei, Q. Su, H. Zeng, Y. Zhang, C. Yu, Compos. Struct. 202, 695 (2018)CrossRefGoogle Scholar
  37. 37.
    H.-S. Shen, Y. Xiang, Comput. Methods Appl. Mech. Eng. 330, 64 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    H.-S. Shen, Y. Xiang, Thin-Walled Struct. 124, 151 (2018)CrossRefGoogle Scholar
  39. 39.
    E. García-Macías, L. Rodríguez-Tembleque, A. Sáez, Compos. Struct. 186, 123 (2018)CrossRefGoogle Scholar
  40. 40.
    L.H. Sperling, Introduction to Physical Polymer Science, 4th edition (John Wiley & Sons Inc., Hoboken, 2006)Google Scholar
  41. 41.
    J.C. Halpin, J.L. Kardos, Polym. Eng. Sci. 16, 344 (1976)CrossRefGoogle Scholar
  42. 42.
    K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Prog. Polym. Sci. 39, 1934 (2014)CrossRefGoogle Scholar
  43. 43.
    F. Lin, Y. Xiang, H.-S. Shen, Compos. B Eng. 111, 261 (2017)CrossRefGoogle Scholar
  44. 44.
    J.N. Reddy, C.F. Liu, Int. J. Eng. Sci. 23, 319 (1985)CrossRefGoogle Scholar
  45. 45.
    H.-S. Shen, Postbuckling Behavior of Plates and Shells (World Scientific Publishing Co. Pte. Ltd., Singapore, 2017)Google Scholar
  46. 46.
    H.-S. Shen, Y. Xiang, Y. Fan, D. Hui, Compos. B Eng. 141, 148 (2018)CrossRefGoogle Scholar
  47. 47.
    H.-S. Shen, Compos. Struct. 113, 216 (2014)CrossRefGoogle Scholar
  48. 48.
    H.-S. Shen, A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells (John Wiley & Sons Inc., 2013)Google Scholar
  49. 49.
    K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, Adv. Funct. Mater. 20, 3322 (2010)CrossRefGoogle Scholar
  50. 50.
    H.-S. Shen, Appl. Math. Mech. 18, 1137 (1997)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations