Advertisement

On the spin-1/2 Aharonov-Bohm problem for modified Pöschl-Teller potential, physical regularization and self-adjoint extensions

  • N. FerkousEmail author
  • A. Boultif
  • M. Sifour
Regular Article
  • 8 Downloads

Abstract.

We study the bound-state energies for a spin-1/2 particle subjected to the modified Pöschl-Teller potential and an Aharonov-Bohm field in the nonrelativistic limit. The problem of the \( \delta\)-function singularity which describes the interaction between spin and magnetic flux is solved using two different approaches already known in the literature, the first is a physical regularization based on a redefinition of the Aharonov-Bohm field as a limit of another one which is more physical and less singular. The second is the self-adjoint extensions method, we obtain an expression for the self-adjoint extension parameter in terms of the physics of the problem.

References

  1. 1.
    W. Heisenberg, Ann. Phys. (Weinheim) 32, 20 (1938)CrossRefGoogle Scholar
  2. 2.
    J. Schwinger, Phys. Rev. 82, 664 (1951)CrossRefGoogle Scholar
  3. 3.
    G.'t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)CrossRefGoogle Scholar
  4. 4.
    N. Ferkous, Phys. Rev. A 88, 064101 (2013)CrossRefGoogle Scholar
  5. 5.
    V.S. Araujo, F.A.B. Coutinho, J.F. Perez, Am. J. Phys. 72, 203 (2003)CrossRefGoogle Scholar
  6. 6.
    G. Bonneau, J. Faraut, G. Valent, Am. J. Phys. 69, 322 (2001)CrossRefGoogle Scholar
  7. 7.
    D.M. Gitman, I.V. Tyutin, B.L. Voronov, Self-adjoint extensions in Quantum Mechanics (Springer Science, New York, 2012)Google Scholar
  8. 8.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P.D.S. Gerbert, Phys. Rev. D 40, 1346 (1989)CrossRefGoogle Scholar
  10. 10.
    C.R. Hagen, Phys. Rev. Lett. 64, 503 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    C.R. Hagen, Int. J. Mod. Phys. A 6, 3119 (1991)CrossRefGoogle Scholar
  12. 12.
    C.R. Hagen, Phys. Rev. D 48, 5935 (1993)CrossRefGoogle Scholar
  13. 13.
    C. Tan et al., Chem. Rev. 117, 6225 (2017)CrossRefGoogle Scholar
  14. 14.
    S.H. Dong, Int. J. Theor. Phys. 39, 1119 (2000)CrossRefGoogle Scholar
  15. 15.
    G.H. Sun, S.H. Dong, Phys. Lett. A 374, 4112 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    V.M. Villalba, Phys. Rev. A 49, 586 (1994)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Levinsen, M.M. Parish, Phys. Rev. Lett. 110, 055304 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Hai, F.X. Qiu, H.R. Sheng, Commun. Theor. Phys. 58, 205 (2012)CrossRefGoogle Scholar
  19. 19.
    N. Ferkous, A. Bounames, Phys. Lett. A 325, 21 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    N. Ferkous, A. Bounames, Commun. Theor. Phys. 59, 679 (2013)CrossRefGoogle Scholar
  21. 21.
    C.S. Park, Phys. Rev. B 92, 165422 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Flügge, Practical quantum mechanics (Springer-Verlag, 1994) pp. 178--182Google Scholar
  23. 23.
    D. Agboola, Chin. Phys. Lett. 27, 040301 (2010)CrossRefGoogle Scholar
  24. 24.
    Chen Chang-Yuan, Lu Fa-Lin, You Yuan, Chin. Phys. B 21, 030302 (2012)CrossRefGoogle Scholar
  25. 25.
    W. Bulla, F. Gesztesy, J. Math. Phys. 26, 2520 (1985)MathSciNetCrossRefGoogle Scholar
  26. 26.
    F.M. Andrade, E.O. Silva, M. Pereira, Phys. Rev. D 85, 041701 (2012)CrossRefGoogle Scholar
  27. 27.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, Amsterdam, 2007)Google Scholar
  28. 28.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics II (Academic Press, New York, London, 1975)Google Scholar
  29. 29.
    F.M. Andrade, E.O. Silva, M. Pereira, Ann. Phys. (N.Y.) 339, 510 (2013)CrossRefGoogle Scholar
  30. 30.
    D.K. Park, J. Math. Phys. 36, 5453 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Bordag, S. Voropaev, J. Phys. A 26, 7637 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Theoretical Physics, Department of PhysicsUniversity of JijelJijelAlgeria

Personalised recommendations