Effects of sphericity coefficient and fuel type on flame propagation inside an obstructed chamber

  • Iman ShiryanpourEmail author
  • Norollah KasiriEmail author
Regular Article


The recognition of the flame propagation is a significant issue for the safety and protections in various industrial plants. In this research, computational fluid dynamic is applied to simulate the flow features and flame deflagration inside a confined chamber with obstacles. This study has focused on the transient progress of flame to determine the main effective parameters affecting flow feature and flame propagation. In order to simulate the limited obstacle channel, a three-dimensional model is developed using large eddy simulation (LES) technique. The effects of the obstacle geometry on the flame propagation are comprehensively investigated. Moreover, the influence of various gases (acetylene, hydrogen, methane, propane and butane) on the deflagration progress is thoroughly studied to recognize the main characteristics of the flame structure. Our results show that the flame propagation significantly decreases as the shape of the obstacle becomes similar to a sphere. Our findings also demonstrate that the peak pressure of the flame rises considerably when gases with high multiplying of density and laminar burning velocity (such as acetylene) are blasted inside a limited channel. Quantitative assessment showed that the explosion overpressure has inverse relation with the sphericity coefficient by the power of 2.07 and direct relation with the fuel type through an exponential function.


  1. 1.
    M.B. Gerdroodbary, K. Fallah, H. Pourmirzaagha, Acta Astronaut. 132, 25 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    A. Hassanvand, M. Barzegar Gerdroodbary, Keivan Fallah, Rasoul Moradi, Int. J. Hydrogen Energy 43, 9829 (2018)CrossRefGoogle Scholar
  3. 3.
    K. Fallah, M.B. Gerdroodbary, A. Ghaderi, J. Alinejad, Aerospace Sci. Technol. 76, 187 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Moradi, A. Mahyari, M.B. Gerdroodbary, A. Abdollahi, Y. Amini, Int. J. Hydrogen Energy 43, 16364 (2018)CrossRefGoogle Scholar
  5. 5.
    M.B. Gerdroodbary, Y. Amini, D.D. Ganji, M.R. Takam, Adv. Space Res. 59, 1330 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    D. Bradley, T.M. Cresswell, J.S. Puttock, Combust. Flame 124, 551 (2001)CrossRefGoogle Scholar
  7. 7.
    J. Bull, A critical review of post Piper-Alpha developments in explosion science for the offshore industry, prepared by Firebrand International Ltd. for the HSE (2004)Google Scholar
  8. 8.
    G.A. Chamberlain, J.R. Rowson, Gas explosion experiments in congested plant partially filled with fuel-air mixtures, in Major hazards offshore: Conference (2000) pp. 4--2Google Scholar
  9. 9.
    R. Kumar, E. Bowles, K. Mintz, Combust. Flame 89, 320 (1992)CrossRefGoogle Scholar
  10. 10.
    M. Barzegar Gerdroodbary, D.D. Ganji, Y. Amini, Acta Astronaut. 115, 422 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Moradi, M. Mosavat, M. Barzegar Gerdroodbary, A. Abdollahi, Younes Amini, Acta Astronaut. 151, 487 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    A. Anazadehsayed, M.B. Gerdroodbary, Y. Amini, R. Moradi, Acta Astronaut. 137, 403 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    S. Patel, S. Jarvis, S. Ibrahim, G. Hargrave, Proc. Combust. Inst. 29, 1849 (2002)CrossRefGoogle Scholar
  14. 14.
    V. Sarli, A. Benedetto, G. Russo, S. Jarvis, E. Long, G. Hargrave, Flow, Turb. Combust. 83, 227 (2009)CrossRefGoogle Scholar
  15. 15.
    Xiaoping Wen, Minggao Yu, Zhichao Liu, Wence Sun, J. Loss Prev. Process Ind. 25, 730 (2012)CrossRefGoogle Scholar
  16. 16.
    Sreenivasa Rao Gubba, Salah S. Ibrahim, Weertunge Malalasekera, Assaad R. Masri, Combust. Theory Modell. 13, 513 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Sreenivasa Rao Gubba, Salah S. Ibrahim, Weertunge Malalasekera, Assaad R. Masri, Combust. Flame 158, 2465 (2011)CrossRefGoogle Scholar
  18. 18.
    V.V. Molkov, D.V. Makarov, H. Schneider, Int. J. Hydrogen Energy 32, 2198 (2007)CrossRefGoogle Scholar
  19. 19.
    Vladimir L. Zimont, Flow, Turb. Combust. 97, 875 (2016)CrossRefGoogle Scholar
  20. 20.
    Chaoyi Xu, Lixin Cong, Zhe Yu, Zhanbing Song, Mingshu Bi, J. Loss Prev. Process Ind. 34, 218 (2015)CrossRefGoogle Scholar
  21. 21.
    Luis Tay-Wo-Chong, Alessandro Scarpato, Wolfgang Polifke, LES combustion model with stretch and heat loss effects for prediction of premix flame characteristics and dynamics, in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition (Am. Soc. Mech. Eng., 2017) pp. V04AT04A029--V04AT04A029Google Scholar
  22. 22.
    V.D. Sarli, A.D. Benedetto, G. Russo, J. Hazard. Mater. 169, 435 (2009)CrossRefGoogle Scholar
  23. 23.
    V.D. Sarli, A.D. Benedetto, G. Russo, J. Hazard. Mater. 180, 71 (2010)CrossRefGoogle Scholar
  24. 24.
    V.D. Sarli, A.D. Benedetto, G. Russo, Chem. Eng. Sci. 71, 539 (2011)CrossRefGoogle Scholar
  25. 25.
    V. Yakhot, S. Orszag, Phys. Rev. Lett. 57, 1722 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    V. Molkov, D. Makarov, H. Schneider, J. Phys. D 39, 4366 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    V. Yakhot, S.A. Orszag, J. Sci. Comput. 1, 3 (1986)MathSciNetCrossRefGoogle Scholar
  28. 28.
    V.L. Zimont, V. Battaglia, Flow, Turb. Combust. 77, 305 (2006)CrossRefGoogle Scholar
  29. 29.
    H. Xiao, D. Makarov, J. Sun, V. Molkov, Combust. Flame 159, 1523 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Pitsch, Fluid Mech. 38, 453 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    F. Charlette, C. Meneveau, D. Veynante, Combust. Flame 131, 159 (2002)CrossRefGoogle Scholar
  32. 32.
    T. Poinsot, D. Veynante, Theoretical and numerical combustion, 2nd edition (R.T. Edwards, Inc., 2005)Google Scholar
  33. 33.
    V. Molkov, D. Makarov, H. Schneider, Int. J. Hydrogen Energy 32, 2198 (2007)CrossRefGoogle Scholar
  34. 34.
    M. Sheikholeslami, M. Barzegar Gerdroodbary, R. Moradi, Ahmad Shafee, Zhixiong Li, Comput. Methods Appl. Mech. Eng. 344, 1 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    Mojtaba Mokhtari, M. Barzegar Gerdroodbary, Rezvan Yeganeh, K. Fallah, Eng. Sci. Technol. 20, 1106 (2017)Google Scholar
  36. 36.
    Saman Hariri, Mojtaba Mokhtari, M. Barzegar Gerdroodbary, Keivan Fallah, Eur. Phys. J. Plus 132, 65 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Barzegar Gerdroodbary, M. Rahimi Takami, H.R. Heidari, Keivan Fallah, D.D. Ganji, Acta Astronaut. 123, 283 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    M. Barzegar Gerdroodbary, Shock Waves 24, 537 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    M. Barzegar Gerdroodbary, Mohsen Sheikholeslami, S. Valiallah Mousavi, A. Anazadehsayed, Rasoul Moradi, Chem. Eng. Process. Process Intensif. 123, 58 (2018)CrossRefGoogle Scholar
  40. 40.
    Xiaoping Wen, Minggao Yu, Zhichao Liu, Wence Sun, J. Loss Prev. Process Ind. 25, 730 (2012)CrossRefGoogle Scholar
  41. 41.
    Hakon Wadell, J. Geol. 43, 250 (1935)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Aided Process Engineering (CAPE) Laboratory, Faculty of Chemical EngineeringIran University of Science & TechnologyTehranIran

Personalised recommendations