Interplay of sources of stochastic noise in a resource-based model

  • André AmadoEmail author
  • J. V. Santana-Filho
  • Paulo R. A. Campos
  • Ernesto P. Raposo
Regular Article


We introduce a stochastic resource-based model in which the agents acquire resources from the environment. The model dynamics is described by two coupled stochastic differential equations with distinct sources of noise, one acting on the population size and the other affecting the availability of resources. Random fluctuations from the environment and the population dynamics itself are simulated as stochastic effects causing variations in the resource influx and death rates. We derive analytical results for the probability density of the population size and amount of available resource when a single source exists. The analytical expressions and numerical results, that uses the Milstein approach, show a remarkable agreement. In particular, the presence of stochasticity in the death rate leads to an effectively higher death rate in comparison to the deterministic counterpart of the model. On the other hand, when the two sources of stochastic fluctuations are considered, interesting antagonistic effects are revealed by the Pearson coefficient of the correlation between the population size and resource availability. Indeed, small fluctuations in resource availability reveal strong negative correlations. In contrast, when the noise in the death rate is too low the equilibrium population size and available resource become nearly uncorrelated. We also generalize the model to handle an arbitrary number of species and resources. This allows us to probe the underlying conditions for coexistence among species. We find a stable coexistence of many species over a wide range of parameter values. In the most general conditions, the system does not violate the competitive exclusion principle.


  1. 1.
    T.R. Malthus, An Essay on the Principle of Population as it Affects the Future Improvement of Society (1798)Google Scholar
  2. 2.
    M. Begon, C.R. Townsend, J.L. Harper, Ecology: From Individuals to Ecosystems (Blackwell Scientific Publications, 2006)Google Scholar
  3. 3.
    A.J. Lotka, J. Phys. Chem. 14, 3 (1910)Google Scholar
  4. 4.
    V. Volterra, Mem. Accad. Lincei Roma 6, 2 (1926)Google Scholar
  5. 5.
    J.A. León, D.B. Tumpson, J. Theor. Biol. 50, 1 (1975)CrossRefGoogle Scholar
  6. 6.
    S.P. Otto, T. Day, A Biologist's Guide to Mathematical Modeling in Ecology and Evolution (Princeton University Press, 2011)Google Scholar
  7. 7.
    M.E. Gilpin, Am. Nat. 113, 2 (1979)CrossRefGoogle Scholar
  8. 8.
    A. Arneodo et al., J. Math. Biol. 14, 2 (1982)CrossRefGoogle Scholar
  9. 9.
    J. Huisman, F.J. Weissing, Ecology 82, 10 (2001)CrossRefGoogle Scholar
  10. 10.
    D. Tilman, Am. Nat. 116, 3 (1980)CrossRefGoogle Scholar
  11. 11.
    D. Tilman, Ecology 58, 2 (1977)CrossRefGoogle Scholar
  12. 12.
    J. Monod, Ann. Inst. Pasteur 79, 390 (1950)Google Scholar
  13. 13.
    G. Hardin, Science 131, 3409 (1960)Google Scholar
  14. 14.
    P. Schippers et al., Ecol. Lett. 4, 5 (2001)CrossRefGoogle Scholar
  15. 15.
    G.E. Hutchinson, Am. Nat. 95, 137 (1961)CrossRefGoogle Scholar
  16. 16.
    W. Huang et al., PeerJ 4, e2329 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Huisman, F.J. Weissing, Nature 402, 6760 (1999)CrossRefGoogle Scholar
  18. 18.
    N. Shoresh, M. Hegreness, R. Kishony, Proc. Natl. Acad. Sci. 105, 34 (2008)CrossRefGoogle Scholar
  19. 19.
    D.L. DeAngelis, J.C. Waterhouse, Ecol. Monograph 57, 1 (1987)CrossRefGoogle Scholar
  20. 20.
    T. Coulson, P. Rohani, M. Pascual, Trends Ecol. Evol. 19, 7 (2004)CrossRefGoogle Scholar
  21. 21.
    K. Higgins et al., Science 276, 5317 (1997)CrossRefGoogle Scholar
  22. 22.
    T.G. Benton, S.J. Plaistow, T.N. Coulson, Proc. R. Soc. London B 273, 1591 (2006)CrossRefGoogle Scholar
  23. 23.
    V. Kaitala et al., Proc. R. Soc. London B 264, 1384 (1997)CrossRefGoogle Scholar
  24. 24.
    O.N. Bjørnstad, B.T. Grenfell, Science 293, 5530 (2001)CrossRefGoogle Scholar
  25. 25.
    I.E. Måren et al., Ecology 99, 1 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Leirs et al., Nature 389, 6647 (1997)CrossRefGoogle Scholar
  27. 27.
    G. Scheffer et al., Hydrobiologia 491, 9 (2003)CrossRefGoogle Scholar
  28. 28.
    L. Fernández et al., Phys. Rev. E 93, 5 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, Heidelberg, 2004)Google Scholar
  30. 30.
    A. Schenzle, H. Brand, Phys. Rev. A 20, 11 (1979)CrossRefGoogle Scholar
  31. 31.
    A.S.L. Gomes et al., Sci. Rep. 6, 27987 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    T. Pfeiffer, S. Schuster, S. Bonhoeffer, Science 292, 5516 (2001)CrossRefGoogle Scholar
  33. 33.
    A. Amado et al., R. Soc. Open Sci. 3, 11 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Fernández, P.R.A. Campos, Eur. Phys. J. Plus 132, 2 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Michaelis, M.L. Menten, Biochem. Z. 49, 333 (1913)Google Scholar
  36. 36.
    G.E. Briggs, J.B.S. Haldane, Biochem. J. 19, 2 (1925)Google Scholar
  37. 37.
    P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, Heidelberg, 2013)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Dinâmica Evolucionária, Departamento de FísicaUniversidade Federal de PernambucoRecife-PEBrazil
  2. 2.Laboratório de Física Teórica e Computacional, Departamento de FísicaUniversidade Federal de PernambucoRecife-PEBrazil

Personalised recommendations