Canonical and symplectic analysis of actions describing linearized gravity

  • Alberto EscalanteEmail author
  • Melissa Rodríguez-Zárate
Regular Article


By using the canonical and symplectic approaches an (nonstandard) alternative action describing linearized gravity is studied. We identify the complete set of Dirac's constraints, the counting of physical degrees of freedom is performed and the Dirac brackets are constructed. Furthermore, the symplectic analysis is developed which includes the complete set of Faddeev-Jackiw constraints and a symplectic tensor; from that symplectic matrix we show that the generalized Faddeev-Jackiw brackets and the Dirac ones coincide to each other. With all these results at hand, we prove that the number of physical degrees of freedom are eight, thus, we conclude that the theory does not describe the dynamics of linearized gravity. In addition, we also develop the symplectic analysis of standard linearized gravity and we compare the results for both standard and nonstandard theories. Finally we present some remarks and conclusions.


  1. 1.
    A. Hanson, T. Regge, C. Teitelboim, Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, Roma, 1978)Google Scholar
  2. 2.
    D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, in Springer Series in Nuclear and Particle Physics (Springer, 1990)Google Scholar
  3. 3.
    S. Weinberg, The Quantum Theory of Fields, Volumes I and II (Cambridge University Press, Cambridge, England, 1996)Google Scholar
  4. 4.
    A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore, 1991)Google Scholar
  5. 5.
    P. Peldan, Class. Quantum Grav. 11, 1087 (1994)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)Google Scholar
  7. 7.
    T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)Google Scholar
  8. 8.
    C. Rovelli, Living. Rev. Relativ. 1, 1 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    T. Thiemann, Lect. Notes Phys. 721, 185 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    LIGO Scientific Collaboration and Virgo Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Barcelos-Neto, T.G. Dargam, Z. Phys. C 67, 701 (1995)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    R. Rosas-Rodriguez, J. Phys. Conf. Ser. 24, 231 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    R. Rosas-Rodriguez, J. Phys. Conf. Ser. 91, 012013 (2007)CrossRefGoogle Scholar
  15. 15.
    P.A.M. Dirac, Lectures Notes on Quantum Mechanics (Yeshiva University, New York, 1964)Google Scholar
  16. 16.
    L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    G.F. Torres del Castillo, Rev. Mex. Fis. 37, 443 (1991)Google Scholar
  18. 18.
    E.M.C. Abreu, A.C.R. Mendes, C. Neves, W. Oliveira, F.I. Takakura, L.M.V. Xavier, Mod. Phys. Lett. A 23, 829 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    E.M.C. Abreu, A.C.R. Mendes, C. Neves, W. Oliveira, F.I. Takakura, Int. J. Mod. Phys. A 22, 3605 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    E.M.C. Abreu, C. Neves, W. Oliveira, Int. J. Mod. Phys. A 21, 5329 (2008)Google Scholar
  21. 21.
    C. Neves, W. Oliveira, D.C. Rodrigues, C. Wotzasek, Phys. Rev. D 69, 045016 (2004)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Neves, C. Wotzasek, Int. J. Mod. Phys. A 17, 4025 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    C. Neves, W. Oliveira, Phys. Lett. A 32, 267 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Garcia, J.M. Pons, Int. J. Mod. Phys. A 12, 451 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    E.M.C. Abreu, A.C.R. Mendes, C. Neves, W. Oliveira, R.C.N. Silva, C. Wotzasek, Phys. Lett. A 37, 3603 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    L. Liao, Y.C. Huang, Ann. Phys. 322, 2469 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Escalante, J. Manuel-Cabrera, Ann. Phys. 343, 27 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    A. Escalante, M. Zárate, Ann. Phys. 353, 163 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A. Escalante, J. Manuel-Cabrera, Ann. Phys. 36, 1585 (2015)Google Scholar
  30. 30.
    A. Escalante, O. Rodríguez-Tzompantzi, Ann. Phys. 364, 136 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    G.F. Torres del Castillo, D. Acosta Avalos, Rev. Mex. Fis. 40, 405 (1994)Google Scholar
  32. 32.
    A. Escalante, Phys. Lett. B 676, 105 (2009)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Física Luis Rivera TerrazasBenemérita Universidad Autónoma de PueblaPuebla Pue.Mexico
  2. 2.Facultad de Ciencias Físico-MatemáticasBenemérita Universidad Autónoma de PueblaPuebla, Pue.Mexico

Personalised recommendations