Advertisement

Effect of variable magnetic field on the flow between two squeezing plates

  • Muhammad Sohail KhanEmail author
  • Rehan Ali Shah
  • Aamir Khan
Regular Article
  • 28 Downloads

Abstract.

In this paper, a viscous fluid is considered between two horizontal and infinite squeezing plates. The unsteady equations of mass and momentum conservation is coupled with the variable magnetic field and energy equations. The governing system of equations along with entropy generation is solved by the Parametric Continuation Method (PCM). A parametric investigation is plotted through graphs for the velocity field and magnetic field components. Also, the entropy generation due to heat transfer, magnetic field and fluid friction is studied through graphs and tables. It is derived that an increase in magnetic Reynolds number, squeezing number or Hartman number increases the fluid temperature. The magnetic field components are also increasing with increase in magnetic flux. It is also derived that an increase in the rate of momentum diffusion increases the entropy generation and Bejan number due to maximum disorderness of molecules near the plates. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems, heating-up or cooling processes, biological sensor systems and biological prosthetic etc.

References

  1. 1.
    J. Stefan, Sitzungsber. kais. Akad. Wiss. Math. Naturwiss. Kl. 69, 713 (1874)Google Scholar
  2. 2.
    E.O. Salbu, J. Basic Eng. 86, 355 (1964)CrossRefGoogle Scholar
  3. 3.
    J.F. Thorpe, W.A. Shaw, Developments in Theoretical and Applied Mechanics (Pergamon Press, Oxford, 1967)Google Scholar
  4. 4.
    D.C. Kuzma, Appl. Sci. Res. 18, 15 (1968)CrossRefGoogle Scholar
  5. 5.
    P.S. Gupta, A.S. Gupta, Wear 45, 177 (1977)CrossRefGoogle Scholar
  6. 6.
    R.L. Verma, Wear 72, 89 (1981)CrossRefGoogle Scholar
  7. 7.
    P. Singh, V. Radhakrishnan, K.A. Narayan, Ing. Arch. 60, 274 (1990)CrossRefGoogle Scholar
  8. 8.
    A.F. Elkouh, J. Tribol. 106, 223 (1986)CrossRefGoogle Scholar
  9. 9.
    P.T. Nan, R.I. Tanner, J. Non-Newtonian Fluid Mech. 14, 327 (1984)CrossRefGoogle Scholar
  10. 10.
    M. Kompani, D.C. Venerus, Rheol. Acta 39, 444 (2000)CrossRefGoogle Scholar
  11. 11.
    B. Hoffner, O.H. Campanella, M.G. Corradini, M. Peleg, Rheol. Acta 40, 289 (2001)CrossRefGoogle Scholar
  12. 12.
    J.H. He, Int. J. Mod. Phys. 20, 1141 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Jaluria, Natural Convection, Heat and Mass Transfer (Pergamon Press, New York, 1980)Google Scholar
  14. 14.
    I. Michiyoshi, I. Takahashi, A. Serizawa, Int. J. Heat Mass Transfer 19, 1021 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    M. Fumizawa, J. Nucl. Sci. Technol. 17, 98 (1980)CrossRefGoogle Scholar
  16. 16.
    P.R. Shrama, G. Singh, Tamkang J. Sci. Eng. 13, 235 (2010)Google Scholar
  17. 17.
    J.C. Hunt, R.J. Holroyd, Applications of Laboratory and Theoretical MHD Duct Flow Studies in Fusion Reactor Technology, technical report CLM-R 169, Culham Laboratory (Oxfordshire, UK, 1977)Google Scholar
  18. 18.
    N.B. Morley et al., Fusion Sci. Technol. 47, 488 (2005)CrossRefGoogle Scholar
  19. 19.
    P.A. Davidson, Magnetohydrodynamics 29, 49 (1993)Google Scholar
  20. 20.
    A. Tsinober, AIAA Progr. Aeronau. Astronaut. 123, 327 (1990)Google Scholar
  21. 21.
    R. Younsi, Therm. Sci. 13, 13 (2009)CrossRefGoogle Scholar
  22. 22.
    A.A. Mohamed, Meccanica 45, 97 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    P.R. Sharma, G. Singh, Therm. Sci. 13, 5 (2009)CrossRefGoogle Scholar
  24. 24.
    P.A. Vadher et al., Meccanica 45, 767 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Kumar, Therm. Sci. 13, 163 (2009)CrossRefGoogle Scholar
  26. 26.
    J.G. Abuga, M. Kinyanjui, J.K. Sigey, J. Eng. Technol. Res. 3, 314 (2011)Google Scholar
  27. 27.
    H.A. Hoshyar, D.D. Ganji, A.R. Borran, M. Falahati, Latin Am. J. Solid Struct. 12, 1679 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Carnot, Reflexions sur la Puissance Motrice du Feu (Bachelier, France, Paris, 1824)Google Scholar
  29. 29.
    R. Clausius, Ann. Phys. 169, 481 (1854)CrossRefGoogle Scholar
  30. 30.
    R. Clausius, Ann. Phys. 201, 353 (1865)CrossRefGoogle Scholar
  31. 31.
    A. Bejan, Entropy Generation Through Heat Fluid Flow (New York Wiley, 1982)Google Scholar
  32. 32.
    A. Bejan, Adv. Heat Transfer 15, 1 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    A. Bejan, Energy Int. 5, 721 (1980)ADSGoogle Scholar
  34. 34.
    A. Bejan, Entropy Generation Minimization (CRC Press, New York, NY, USA, 1995)Google Scholar
  35. 35.
    A. Bejan, J. Heat Transf. 101, 718 (1979)CrossRefGoogle Scholar
  36. 36.
    A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and Optimization (JohnWiley and Sons, New York, NY, USA, 1996)Google Scholar
  37. 37.
    M. Roy, T. Basak, S. Roy, I. Pop, Numer., Heat Transf., Part A Appl. 68, 44 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    S. Bhardwaj, A. Dalal, Numer. Heat Transf. Part A Appl. 67, 972 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Y.T. Yang, Y.H. Wang, H. Yi-Hsien, B.Y. Huang, Numer. Heat Transf. Part A Appl. 67, 571 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    G. Komurgoz, A. Arikoglu, E. Turker, I. Ozkol, Numer. Heat Transf. Part A Appl. 57, 603 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    H. Salas, S. Cuevas, M.L. de Haro, J. Phys. D 32, 2605 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    S. Mahmud, S.H. Tasnim, M.A.H. Mamun, Int. J. Therm. Sci. 42, 731 (2003)CrossRefGoogle Scholar
  43. 43.
    D.S. Chauhan, V. Kumar, Int. J. Energy Technol. 3, 1 (2011)Google Scholar
  44. 44.
    M.Q.A. Odat, A. Renhe, Mohd A. Damseh, Al-Nimr., Entropy 6, 293 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    R. Shah, A. Khan, Shuaib, Eur. Phys. J. Plus 132, 342 (2017)CrossRefGoogle Scholar
  46. 46.
    R. Shah, A. Khan, Shuaib, J. Comput. Theor. Nanosci. 14, 1C12 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Khan, R. Shah, M. Shuaib, Results Phys. 9, 923 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    R. Shah, A. Khan, Shuaib, Heliyon 4, e00925 (2018)CrossRefGoogle Scholar
  49. 49.
    R. Shah, A. Khan, Shuaib, Heat Transf. Res. 49, 1103C1118 (2018)Google Scholar
  50. 50.
    R. Shah, A. Khan, Shuaib, J. Phys. Math. 8, 242 (2017)Google Scholar
  51. 51.
    Zahir Shah, Saeed Islam, Hamza Ayaz, Saima Khan, J. Heat Transf. 141, 022401 (2018)CrossRefGoogle Scholar
  52. 52.
    Zahir Shah, Saeed Islama, Taza Gul, Results Phys. 9, 1201 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    Zahir Shah, Saeed Islama, Taza Gul, Results Phys. 10, 36 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basie Sciences and IslamiatUniversity of Engineering and Technology PeshawarKhyber Pakhtoon KhwaPakistan

Personalised recommendations