Advertisement

Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study

  • Farzad EbrahimiEmail author
  • Ali Dabbagh
Regular Article

Abstract.

Application of the Rayleigh-Ritz method for the vibration problem of a porous multi-scale hybrid nanocomposite graphene oxide powder (GOP)/carbon fiber (CF)-reinforced beam is shown here for the first time on the basis of a new refined higher-order shear deformation beam theory. The structure consists of an initial matrix which is strengthened via both macro- and nano-scale reinforcements. Herein, GOPs and CFs are selected to be dispersed inside the resin. Moreover, the influences of porosity are included, too. The governing equations of the problem are achieved in the framework of a new refined higher-order beam model. Afterward, the Rayleigh-Ritz well-known finite-element method (FEM) is implemented to solve the problem for various boundary conditions (BCs). The validity of the presented formulation is checked by comparing the results of the employed FEM with those achieved from the Navier solution. it is shown that hybrid nanocomposites are able to support higher natural frequencies in comparison with either conventional fiber-reinforced composites or common two-phase GOP-reinforced nanocomposites.

References

  1. 1.
    A. Zenkour, M. Fares, Composites Part B 32, 237 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Wang et al., Int. J. Mech. Sci. 44, 1275 (2002)CrossRefGoogle Scholar
  3. 3.
    B. Patel, M. Ganapathi, D. Makhecha, Compos. Struct. 56, 25 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Ferreira, C. Roque, R. Jorge, Comput. Methods Appl. Mech. Eng. 194, 4265 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    M. Aydogdu, Compos. Sci. Technol. 67, 1096 (2007)CrossRefGoogle Scholar
  6. 6.
    H. Matsunaga, Int. J. Mech. Sci. 49, 1060 (2007)CrossRefGoogle Scholar
  7. 7.
    G.B. Chai, C.W. Yap, Compos. Sci. Technol. 68, 1664 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Ćetković, D. Vuksanović, Compos. Struct. 88, 219 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Aydogdu, Compos. Struct. 89, 94 (2009)CrossRefGoogle Scholar
  10. 10.
    F.A. Fazzolari, E. Carrera, Compos. Struct. 94, 50 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Rodrigues et al., Compos. Struct. 93, 1613 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Alesadi, M. Galehdari, S. Shojaee, Comp. Struct. 183, 38 (2017)CrossRefGoogle Scholar
  13. 13.
    N.-D. Nguyen et al., Compos. Struct. 184, 452 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Shojaee et al., Compos. Struct. 94, 1677 (2012)CrossRefGoogle Scholar
  15. 15.
    C.H. Thai et al., Eur. J. Mech. A 43, 89 (2014)CrossRefGoogle Scholar
  16. 16.
    C.H. Thai et al., Compos. Struct. 104, 196 (2013)CrossRefGoogle Scholar
  17. 17.
    C.H. Thai et al., Mech. Adv. Mater. Struct. 22, 451 (2015)CrossRefGoogle Scholar
  18. 18.
    C.H. Thai et al., Int. J. Numer. Methods Engin. 91, 571 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Yu et al., Thin-Walled Struct. 101, 141 (2016)CrossRefGoogle Scholar
  20. 20.
    A.J. Aref, S. Alampalli, Compos. Struct. 52, 467 (2001)CrossRefGoogle Scholar
  21. 21.
    V. Tita, J.d. Carvalho, J. Lirani, J. Braz. Soc. Mech. Sci. Eng. 25, 306 (2003)CrossRefGoogle Scholar
  22. 22.
    A. Zenkour, J. Eng. Math. 50, 75 (2004)CrossRefGoogle Scholar
  23. 23.
    P. Qiao, M. Yang, Composites Part B 38, 739 (2007)CrossRefGoogle Scholar
  24. 24.
    T. Roy, D. Chakraborty, J. Sound Vib. 319, 15 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    S. Mareishi et al., Composites Part B 59, 123 (2014)CrossRefGoogle Scholar
  26. 26.
    K. Sepahvand, Compos. Struct. 145, 119 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Jabbari et al., J. Therm. Stresses 37, 202 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Jabbari, A. Mojahedin, M. Haghi, Thin-Walled Struct. 85, 50 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Chen, J. Yang, S. Kitipornchai, Compos. Struct. 133, 54 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Ebrahimi, M. Zia, Acta Astronaut. 116, 117 (2015)CrossRefGoogle Scholar
  31. 31.
    F. Ebrahimi, S. Habibi, Steel Compos. Struct. 20, 205 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Mojahedin et al., Thin-Walled Struct. 99, 83 (2016)CrossRefGoogle Scholar
  33. 33.
    F. Ebrahimi, M.R. Barati, Compos. Struct. 166, 256 (2017)CrossRefGoogle Scholar
  34. 34.
    F. Ebrahimi, A. Jafari, M.R. Barati, Eur. Phys. J. Plus 132, 521 (2017)CrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi, A. Jafari, M.R. Barati, Thin-Walled Struct. 119, 33 (2017)CrossRefGoogle Scholar
  36. 36.
    F. Ebrahimi, A. Jafari, M.R. Barati, Arab. J. Sci. Eng. 42, 1865 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Y.Q. Wang, J.W. Zu, Aerospace Sci. Technol. 69, 550 (2017)CrossRefGoogle Scholar
  38. 38.
    Y.Q. Wang, Acta Astronaut. 143, 263 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    L.-L. Ke, J. Yang, S. Kitipornchai, Compos. Struct. 92, 676 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Zhu, Z. Lei, K.M. Liew, Compos. Struct. 94, 1450 (2012)CrossRefGoogle Scholar
  41. 41.
    H.-S. Shen, Y. Xiang, Composites Part B 67, 50 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Heshmati, M. Yas, F. Daneshmand, Compos. Struct. 125, 434 (2015)CrossRefGoogle Scholar
  43. 43.
    Z. Lei, L. Zhang, K. Liew, Compos. Struct. 127, 245 (2015)CrossRefGoogle Scholar
  44. 44.
    N. Wattanasakulpong, A. Chaikittiratana, Appl. Math. Modell. 39, 5459 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Zhang, K. Liew, Compos. Struct. 132, 974 (2015)CrossRefGoogle Scholar
  46. 46.
    J. Jam, Y. Kiani, Compos. Struct. 132, 35 (2015)CrossRefGoogle Scholar
  47. 47.
    P. Phung-Van et al., Compos. Struct. 123, 137 (2015)CrossRefGoogle Scholar
  48. 48.
    Z. Song, L. Zhang, K. Liew, Composites Part B 99, 154 (2016)CrossRefGoogle Scholar
  49. 49.
    F. Tornabene et al., Composites Part B 89, 187 (2016)CrossRefGoogle Scholar
  50. 50.
    Z. Lei, L. Zhang, K. Liew, Composites Part B 90, 251 (2016)CrossRefGoogle Scholar
  51. 51.
    L. Zhang, K. Liew, J. Reddy, Compos. Struct. 152, 418 (2016)CrossRefGoogle Scholar
  52. 52.
    F. Ebrahimi, S. Habibi, Adv. Nano Res. 5, 69 (2017)CrossRefGoogle Scholar
  53. 53.
    E. García-Macías et al., Composites Part B 128, 208 (2017)CrossRefGoogle Scholar
  54. 54.
    R. Ansari, J. Torabi, M. Faghih Shojaei, Composites Part B 109, 197 (2017)CrossRefGoogle Scholar
  55. 55.
    H. Zarei et al., Composites Part B 113, 206 (2017)CrossRefGoogle Scholar
  56. 56.
    N. Fantuzzi et al., Composites Part B 115, 384 (2017)CrossRefGoogle Scholar
  57. 57.
    F. Ebrahimi, N. Farazmandnia, Steel Compos. Struct. 27, 149 (2018)Google Scholar
  58. 58.
    B. Bakhadda et al., Wind Struct. 27, 311 (2018)Google Scholar
  59. 59.
    Y. Mokhtar et al., Smart Struct. Syst. 21, 397 (2018)Google Scholar
  60. 60.
    M. Yazid et al., Smart Struct. Syst. 21, 15 (2018)Google Scholar
  61. 61.
    M. Song, S. Kitipornchai, J. Yang, Compos. Struct. 159, 579 (2017)CrossRefGoogle Scholar
  62. 62.
    H.-S. Shen et al., Composites Part B 119, 67 (2017)CrossRefGoogle Scholar
  63. 63.
    C. Feng, S. Kitipornchai, J. Yang, Composites Part B 110, 132 (2017)CrossRefGoogle Scholar
  64. 64.
    J. Yang, H. Wu, S. Kitipornchai, Compos. Struct. 161, 111 (2017)CrossRefGoogle Scholar
  65. 65.
    M.R. Barati, A.M. Zenkour, Compos. Struct. 181, 194 (2017)CrossRefGoogle Scholar
  66. 66.
    Y. Fan et al., Composites Part B 144, 184 (2018)CrossRefGoogle Scholar
  67. 67.
    H.-S. Shen et al., Composites Part B 141, 148 (2018)CrossRefGoogle Scholar
  68. 68.
    E. García-Macías, L. Rodriguez-Tembleque, A. Sáez, Compos. Struct. 186, 123 (2018)CrossRefGoogle Scholar
  69. 69.
    D. Liu et al., Compos. Struct. 189, 560 (2018)CrossRefGoogle Scholar
  70. 70.
    Y. Kiani, M. Mirzaei, Compos. Struct. 186, 114 (2018)CrossRefGoogle Scholar
  71. 71.
    M. Song, J. Yang, S. Kitipornchai, Composites Part B 134, 106 (2018)CrossRefGoogle Scholar
  72. 72.
    M.R. Barati, A.M. Zenkour, Mech. Adv. Mater. Struct. (2018)  https://doi.org/10.1080/15376494.2018.1444235
  73. 73.
    Z. Zhang, Mech. Adv. Mater. Struct. (2018)  https://doi.org/10.1080/15376494.2018.1444216
  74. 74.
    Y.Q. Wang, C. Ye, J.W. Zu, Aerospace Sci. Technol. 85, 359 (2019)CrossRefGoogle Scholar
  75. 75.
    M. Rafiee et al., J. Sound Vib. 333, 3236 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    X. He et al., Compos. Struct. 131, 1111 (2015)CrossRefGoogle Scholar
  77. 77.
    M. Rafiee, F. Nitzsche, M. Labrosse, Compos. Struct. 150, 191 (2016)CrossRefGoogle Scholar
  78. 78.
    A. Ghorbanpour Arani, J. Sandw. Struct. Mater. (2017)  https://doi.org/10.1177/1099636217743177
  79. 79.
    F. Ebrahimi, S. Habibi, Mech. Adv. Mater. Struct. 25, 425 (2018)CrossRefGoogle Scholar
  80. 80.
    R. Gholami, R. Ansari, Eur. Phys. J. Plus 133, 282 (2018)CrossRefGoogle Scholar
  81. 81.
    M. Rafiee, F. Nitzsche, M. Labrosse, Int. J. Non-Linear Mech. 103, 104 (2018)ADSCrossRefGoogle Scholar
  82. 82.
    F. Ebrahimi, A. Dabbagh, J. Vib. Control 25, 933 (2019)MathSciNetCrossRefGoogle Scholar
  83. 83.
    D.-L. Shi et al., J. Eng. Mater. Technol. 126, 250 (2004)CrossRefGoogle Scholar
  84. 84.
    M. Van Es, Polymer-Clay Nanocomposites PhD Thesis, Delft, 2001Google Scholar
  85. 85.
    Z. Kaczkowski, Plates-Statistical Calculations (Arkady, Warsaw, 1968)Google Scholar
  86. 86.
    J.N. Reddy, J. Appl. Mech. 51, 745 (1984)ADSCrossRefGoogle Scholar
  87. 87.
    K. Soldatos, Acta Mech. 94, 195 (1992)MathSciNetCrossRefGoogle Scholar
  88. 88.
    M. Touratier, Int. J. Eng. Sci. 29, 901 (1991)CrossRefGoogle Scholar
  89. 89.
    H. Bellifa et al., Struct. Eng. Mech. 62, 695 (2017)Google Scholar
  90. 90.
    Z. Belabed et al., Earthquakes Struct. 14, 103 (2018)Google Scholar
  91. 91.
    R. Hamza-Cherif et al., J. Nano Res. 54, 1 (2018)CrossRefGoogle Scholar
  92. 92.
    F.Z. Zaoui, D. Ouinas, A. Tounsi, Composites Part B 159, 231 (2019)CrossRefGoogle Scholar
  93. 93.
    S.A. Yahia et al., Struct. Eng. Mech. 53, 1143 (2015)CrossRefGoogle Scholar
  94. 94.
    A. Zemri et al., Struct. Eng. Mech. 54, 693 (2015)CrossRefGoogle Scholar
  95. 95.
    A.A. Bousahla et al., Struct. Eng. Mech. 60, 313 (2016)CrossRefGoogle Scholar
  96. 96.
    M. Abualnour et al., Compos. Struct. 184, 688 (2018)CrossRefGoogle Scholar
  97. 97.
    A. Bouhadra et al., Struct. Eng. Mech. 66, 61 (2018)Google Scholar
  98. 98.
    Y. Wang, J. Zu, Appl. Math. Mech. 38, 625 (2017)CrossRefGoogle Scholar
  99. 99.
    Y.Q. Wang, X.B. Huang, J. Li, Int. J. Mech. Sci. 110, 201 (2016)CrossRefGoogle Scholar
  100. 100.
    Y.Q. Wang et al., Appl. Math. Modell. 64, 55 (2018)CrossRefGoogle Scholar
  101. 101.
    Y.Q. Wang, J.W. Zu, Compos. Struct. 164, 130 (2017)CrossRefGoogle Scholar
  102. 102.
    H.H. Abdelaziz et al., Steel Compos. Struct. 25, 693 (2017)Google Scholar
  103. 103.
    A. Kaci et al., Struct. Eng. Mech. 65, 621 (2018)Google Scholar
  104. 104.
    H.-T. Thai, T.P. Vo, Int. J. Mech. Sci. 62, 57 (2012)CrossRefGoogle Scholar
  105. 105.
    F. Ebrahimi, F. Ghasemi, E. Salari, Meccanica 51, 223 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations