Advertisement

A high-order split-step finite difference method for the system of the space fractional CNLS

Regular Article
  • 36 Downloads

Abstract.

In this paper, the schemes based on the high-order quasi-compact split-step finite difference methods are derived for the one- and two-dimensional coupled fractional Schrödinger equations. In order to improve the computing efficiency, we adopt the split-step method for handling the nonlinearity. By using a high-order quasi-compact scheme in space, the numerical method improves the accuracy effectively. We prove the conservation laws, prior boundedness and unconditional error estimates of the quasi-compact finite difference scheme for the linear problem. Moreover, for the nonlinear problem, we show that the quasi-compact split-step finite difference method can also keep the conservation law in the mass sense. For solving the multi-dimensional problem, we combine the quasi-compact split-step method with the alternating direction implicit technique. At last, numerical examples are performed to illustrate our theoretical results and show the efficiency of the proposed schemes.

References

  1. 1.
    N. Laskin, Phys. Rev. E 62, 3135 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    N. Laskin, Phys. Rev. E 66, 056108 (2002)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Naber, J. Math. Phys. 45, 3339 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    X. Guo, M. Xu, J. Math. Phys. 47, 082104 (2006)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Stickler, Phys. Rev. E 88, 012120 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Longhi, Opt. Lett. 40, 1117 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    R. Herrmann, arXiv:0805.3434Google Scholar
  8. 8.
    W. Chen, J. Vib. Control 14, 1651 (2008)CrossRefGoogle Scholar
  9. 9.
    N.C. Petroni, M. Pusterla, Physica A 388, 824 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Secchi, arXiv:1208.2545Google Scholar
  11. 11.
    S. Secchi, M. Squassina, Appl. Anal. 93, 1702 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Guo, Y. Han, J. Xin, Appl. Math. Comput. 204, 468 (2008)MathSciNetGoogle Scholar
  13. 13.
    Y. Hu, G. Kallianpur, Appl. Math. Optim. 42, 281 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P. Amore, F.M. Fernández, C.P. Hofmann, R.A. Sáenz, J. Math. Phys. 51, 122101 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    W. Bao, X. Dong, J. Comput. Phys. 230, 5449 (2011)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Atangana, A.H. Cloot, Adv. Differ. Equ. 2013, 80 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Wei, Y. He, X. Zhang, S. Wang, Finite Elem. Anal. Des. 59, 28 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    L. Wei, X. Zhang, S. Kumar, A. Yildirim, Comput. Math. Appl. 64, 2603 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    X. Zhao, Z.-z. Sun, Z.-p. Hao, SIAM J. Sci. Comput. 36, 2865 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Wang, A. Xiao, W. Yang, J. Comput. Phys. 242, 670 (2013)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Wang, A. Xiao, W. Yang, J. Comput. Phys. 272, 644 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Wang, A. Xiao, W. Yang, Appl. Math. Comput. 257, 241 (2015)MathSciNetGoogle Scholar
  23. 23.
    P. Wang, C. Huang, J. Comput. Phys. 293, 238 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Wang, C. Huang, Numer. Algorithms 69, 625 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Wang, C. Huang, L. Zhao, J. Comput. Appl. Math. 306, 231 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Wang, C. Huang, Comput. Math. Appl. 71, 1114 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Li, C. Huang, P. Wang, Numer. Algorithms 74, 499 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Li, C. Huang, W. Ming, Numer. Algorithms (2019)  https://doi.org/10.1007/s11075-019-00672-3
  29. 29.
    M. Li, X.-M. Gu, C. Huang, M. Fei, G. Zhang, J. Comput. Phys. 358, 256 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Li, Y.-L. Zhao, Appl. Math. Comput. 338, 758 (2018)MathSciNetGoogle Scholar
  31. 31.
    A. Bhrawy, M. Zaky, Appl. Numer. Math. 111, 197 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Dehghan, M. Abbaszadeh, W. Deng, Appl. Math. Lett. 73, 120 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Dehghan, M. Abbaszadeh, A. Mohebbi, J. Comput. Appl. Math. 280, 14 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Dehghan, M. Abbaszadeh, Appl. Numer. Math. 119, 51 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Dehghan, M. Abbaszadeh, Appl. Numer. Math. 131, 190 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Dehghan, J. Manafian, A. Saadatmandi, Numer. Methods Part. Differ. Equ. 26, 448 (2010)Google Scholar
  37. 37.
    M. Li, C. Huang, Numer. Methods Part. Differ. Equ. (2019)  https://doi.org/10.1002/num.22305
  38. 38.
    M. Dehghan, M. Safarpoor, Math. Methods Appl. Sci. 39, 2461 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    A. Taleei, M. Dehghan, Comput. Phys. Commun. 185, 1515 (2014)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Mohebbi, M. Abbaszadeh, M. Dehghan, Eng. Anal. Bound. Elem. 37, 475 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Weideman, B. Herbst, SIAM J. Numer. Anal. 23, 485 (1986)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    G. Muslu, H. Erbay, Math. Comput. Simul. 67, 581 (2005)CrossRefGoogle Scholar
  43. 43.
    H. Wang, Appl. Math. Comput. 170, 17 (2005)MathSciNetGoogle Scholar
  44. 44.
    T.R. Taha, X. Xu, J. Supercomput. 32, 5 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Dehghan, A. Taleei, Comput. Phys. Commun. 181, 43 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    X. Antoine, W. Bao, C. Besse, Comput. Phys. Commun. 184, 2621 (2013)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Y. Ma, L. Kong, J. Hong, Y. Cao, Comput. Math. Appl. 61, 319 (2011)MathSciNetCrossRefGoogle Scholar
  48. 48.
    L. Kong, J. Hong, L. Ji, P. Zhu, Numer. Methods Part. Differ. Equ. 31, 1814 (2015)CrossRefGoogle Scholar
  49. 49.
    C. Chen, J. Hong, L. Ji, L. Kong, Commun. Comput. Phys. 21, 93 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    S. Duo, Y. Zhang, Comput. Math. Appl. 71, 2257 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    N. Wang, C. Huang, Comput. Math. Appl. 75, 2223 (2018)MathSciNetCrossRefGoogle Scholar
  52. 52.
    K. Kirkpatrick, E. Lenzmann, G. Staffilani, Commun. Math. Phys. 317, 563 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    Z. Fei, V.M. Pérez-Garcia, L. Vázquez, Appl. Math. Comput. 71, 165 (1995)MathSciNetGoogle Scholar
  54. 54.
    S. Li, L. Vu-Quoc, SIAM J. Numer. Anal. 32, 1839 (1995)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Z. Yang, Int. J. Comput. Math. 93, 609 (2016)MathSciNetCrossRefGoogle Scholar
  56. 56.
    M.M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    M.M. Meerschaert, C. Tadjeran, Appl. Numer. Math. 56, 80 (2006)MathSciNetCrossRefGoogle Scholar
  58. 58.
    W. Tian, H. Zhou, W. Deng, Math. Comput. 84, 1703 (2015)CrossRefGoogle Scholar
  59. 59.
    H. Zhou, W. Tian, W. Deng, J. Sci. Comput. 56, 45 (2013)MathSciNetCrossRefGoogle Scholar
  60. 60.
    M. Chen, W. Deng, SIAM J. Numer. Anal. 52, 1418 (2014)MathSciNetCrossRefGoogle Scholar
  61. 61.
    M. Chen, W. Deng, Commun. Comput. Phys. 16, 516 (2014)MathSciNetCrossRefGoogle Scholar
  62. 62.
    H. Ding, C. Li, Y. Chen, J. Comput. Phys. 293, 218 (2015)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Z.-p. Hao, Z.-z. Sun, W.-r. Cao, J. Comput. Phys. 281, 787 (2015)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    P. Wang, C. Huang, J. Comput. Phys. 312, 31 (2016)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    L. Trefethen, Spectral Methods in MATLAB, Vol. 10 (SIAM, Philadelphia, 2000)Google Scholar
  66. 66.
    J. Strikwerda, Finite Difference Schemes and Partial Differential Equations (SIAM, Philadelphia, 2004)Google Scholar
  67. 67.
    Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, SIAM Rev. 54, 667 (2012)MathSciNetCrossRefGoogle Scholar
  68. 68.
    O. Defterli, M. D'Elia, Q. Du, M. Gunzburger, R. Lehoucq, M.M. Meerschaert, Fract. Calc. Appl. Anal. 18, 342 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZhengzhou UniversityZhengzhouChina

Personalised recommendations