Advertisement

Nonlinear strain gradient analysis of nanoplates embedded in an elastic medium incorporating surface stress effects

  • Ehsan Allahyari
  • Masoud AsgariEmail author
  • Francesco Pellicano
Regular Article

Abstract.

Nonlinear vibration of nano graphene plates with considering surface effects is studied in this paper based on the nonlocal strain gradient theory and von Kármán geometric nonlinearity. The isotropic nanoplate is assumed to lie on an elastic foundation with the simply supported boundary conditions. Both Winkler-type and Pasternak-type models are utilized to simulate the interaction of the nano graphene with a surrounding elastic medium. Due to the increase in the surface-to-volume ratios at smaller scales, the surface elasticity theory of Gurtin and Murdoch is developed to study the effects of surface properties which are the basis for size-dependent behaviors. The governing equation of motion can be obtained by von Kármán nonlinear strain-displacement relationship and the nonlinear frequency is obtained analytically using the perturbation approach. Moreover, two moveable and immoveable in-plane conditions are analyzed. The presented method is verified by comparing the results with their counterparts reported in the open literature and a good agreement is observed for two different boundary conditions. Finally, the effects of various parameters such as nonlocal parameter, material characteristic parameter, residual surface tension, mode number, temperature change and elastic medium coefficients for two kinds of in-plane conditions are discussed.

References

  1. 1.
    M. Li, H.X. Tang, M.L. Roukes, Nat. Nanotechnol. 2, 114 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    D.A. Stankovich, Nature 442, 282 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S. Stankovich, J. Mater. Chem. 16, 155 (2006)CrossRefGoogle Scholar
  4. 4.
    E. Allahyari, A. Kiani, Eur. Phys. J. Plus 133, 223 (2018)CrossRefGoogle Scholar
  5. 5.
    A.G. Arani, A. Shiravand, M. Rahi, R. Kolahchi, Physica B 407, 4123 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Kiani, M. Sheikhkhoshkar, A. Jamalpoor, M. Khanzadi, J. Intell. Mater. Syst. Struct. 29, 741 (2018)CrossRefGoogle Scholar
  7. 7.
    J.S. Bunch, Science 315, 490 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Sakhaee-Pour, M.T. Ahmadian, A. Vafai, Application of single-layered graphene sheets as mass sensors and atomistic dust detectors, in ASME 2007 International Mechanical Engineering Congress and Exposition (ASME, 2007) pp. 99--104Google Scholar
  9. 9.
    H.G. Craighead, Science 290, 1532 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    E. Jomehzadeh, A.R. Saidi, World Acad. Sci. Eng. Technol. 5, 6 (2011)Google Scholar
  11. 11.
    L.W. Zhang, Y. Zhang, K.M. Liew, Appl. Math. Modell. 49, 691 (2017)CrossRefGoogle Scholar
  12. 12.
    L.E. Shen, H.-S. Shen, C.-L. Zhang, Comput. Mater. Sci. 48, 680 (2010)CrossRefGoogle Scholar
  13. 13.
    M.D. Dai, C.-W. Kim, K. Eom, Nanoscale Res. Lett. 7, 499 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.-S. Shen, Y. Xiang, F. Lin, Compos. Struct. 170, 80 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Setoodeh, P. Malekzadeh, A. Vosoughi, Proc. Inst. Mech. Eng. C 226, 1896 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Yamaki, Z. Angew. Math. Mech. 41, 501 (1961)MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Hosseini-Hashemi, R. Nazemnezhad, Composites Part B 52, 199 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Strozzi, V.V. Smirnov, L.I. Manevitch, M. Milani, F. Pellicano, J. Sound Vib. 381, 156 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Wang, F.-M. Li, Y.-Z. Wang, Physica E 67, 65 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    R. Fernandes, S. El-Borgi, S.M. Mousavi, J.N. Reddy, A. Mechmoum, Physica E 88, 18 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M. Strozzi, F. Pellicano, Thin-Walled Struct. 67, 63 (2013)CrossRefGoogle Scholar
  22. 22.
    F. Pellicano, M. Barbieri, Int. J. Non-Linear Mech. 65, 196 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Asgari, M. Akhlaghi, Eur. J. Mech. - A/Solids 30, 72 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Gurtin, A. Ian Murdoch, Arch. Rat. Mech. Anal. 57, 291 (1975)CrossRefGoogle Scholar
  25. 25.
    M. Karimi, A.R. Shahidi, Proc. Inst. Mech. Eng. N 231, 111 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Ghadiri, A. Rajabpour, A. Akbarshahi, Appl. Math. Modell. 50, 676 (2017)CrossRefGoogle Scholar
  27. 27.
    R. Sourki, S.A. Hosseini, Eur. Phys. J. Plus 132, 184 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Shaat, F.F. Mahmoud, X.-L. Gao, A.F. Faheem, Int. J. Mech. Sci. 79, 31 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Hosseini-Hashemi, R. Nazemnezhad, M. Bedroud, Appl. Math. Modell. 38, 3538 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Gheshlaghi, S.M. Hasheminejad, Composites Part B 42, 934 (2011)CrossRefGoogle Scholar
  31. 31.
    F. Ebrahimi, E. Heidari, Mech. Adv. Mater. Struct. (2018)  https://doi.org/10.1080/15376494.2017.1410908
  32. 32.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Int. J. Eng. Sci. 107, 169 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Li, Y. Hu, Int. J. Eng. Sci. 97, 84 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)CrossRefGoogle Scholar
  35. 35.
    F. Mehralian, Y. Tadi Beni, M. Karimi Zeverdejani, Physica B 514, 61 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    A. Amiri, R. Talebitooti, L. Li, Eur. Phys. J. Plus 133, 252 (2018)CrossRefGoogle Scholar
  37. 37.
    C.W. Lim, G. Zhang, J.N. Reddy, J. Mech. Phys. Solids 78, 298 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M.E. Gurtin, A. Ian Murdoch, Int. J. Solids Struct. 14, 431 (1978)CrossRefGoogle Scholar
  39. 39.
    J.N. Reddy, Theory and analysis of elastic plates and shells (CRC Press, 2006)Google Scholar
  40. 40.
    S.C. Pradhan, J.K. Phadikar, J. Sound Vib. 325, 206 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    M. Rafiee, X.Q. He, S. Mareishi, K.M. Liew, Int. J. Appl. Mech. 7, 1550074 (2015)CrossRefGoogle Scholar
  42. 42.
    N.-I. Kim, J. Lee, Compos. Struct. 153, 804 (2016)CrossRefGoogle Scholar
  43. 43.
    A.H. Nayfeh, P.F. Pai, Linear and nonlinear structural mechanics (John Wiley & Sons, 2008)Google Scholar
  44. 44.
    A. Assadi, Appl. Math. Modell. 37, 3575 (2013)MathSciNetCrossRefGoogle Scholar
  45. 45.
    S.S. Rao, Vibration of continuous systems (John Wiley & Sons, 2007)Google Scholar
  46. 46.
    A.H. Nayfeh, D.T. Mook, Nonlinear oscillations (John Wiley & Sons, 2008)Google Scholar
  47. 47.
    P. Yu, J. Sound Vib. 211, 19 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    F. Dal, Math. Comput. Appl. 16, 301 (2011)MathSciNetGoogle Scholar
  49. 49.
    N. Ding, X. Chen, C.-M.L. Wu, Sci. Rep. 6, 31499 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIran
  2. 2.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations