Advertisement

Nonlinear mixed thermal convective flow over a rotating disk in suspension of magnesium oxide nanoparticles with water and EG

  • C. S. K. Raju
  • S. U. Mamatha
  • P. Rajadurai
  • Ilyas KhanEmail author
Regular Article
  • 41 Downloads

Abstract.

The present study proclaims the importance of magnesium oxide nanoparticles in non-linear convective boundary flow over a radiated rotating disk with stretching in the radial direction. The flow governing equations are simplified to coupled non-linear ordinary differential equations (ODEs) by endeavoring von Karman transformations. The solution for the resulting system is obtained numerically by the help of Runge-Kutta and Newton’s methods. The validity of the obtained numerical outcome is ensured by comparing with the existing literature as special cases. The comparative plots are provided for magnesium oxide+water and magnesium oxide+ethylene glycol nanofluid. Few of the several significant findings of the current study are: i) The time taken for execution is more in magnesium oxide with ethylene glycol mixture compared to magnesium oxide+water for all the considered non-dimensional parameters. This may be due to the ethylene glycol nanofluid is not amalgamated with magnesium oxide nanofluid properly when compared to water. ii) The nonlinear convection parameter have higher heat transfer rate in ethylene glycol based magnesium oxide mixture when compared to water based magnesium oxide mixture due to nonlinear thermal variation in the flow.

References

  1. 1.
    Suwono, Int. J. Heat Mass Transfer 23, 819 (1980)CrossRefGoogle Scholar
  2. 2.
    T. von Kármán, Z. Angew. Math. Mech. 1, 233 (1921)CrossRefGoogle Scholar
  3. 3.
    M. Turkyilmazoglu, Comput. Fluids 94, 139 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Hayat, M.W.A. Khan, M.I. Khan, M. Waqas, A. Alsaedi, Physica B 538, 138 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    M.M. Rashidi, S. Abelman, N. Freidooni Mehr, Int. J. Heat Mass Transfer 62, 515 (2013)CrossRefGoogle Scholar
  6. 6.
    P. Mitschka, J. Ulbrecht, P. Mitschka, Ulbrecht, Appl. Sci. Res. Sect. A 15, 345 (1966)CrossRefGoogle Scholar
  7. 7.
    A.A. Kendoush, J. Heat Transf. 135, 9 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Frusteri, E. Osalusi, Int. Commun. Heat Mass Transf. 34, 492 (2007)CrossRefGoogle Scholar
  9. 9.
    P. Ram, V. Kumar, Fluid Dyn. Mater. Process. 10, 179 (2014)Google Scholar
  10. 10.
    D.H. Doh, M. Muthtamilselvan, Int. J. Mech. Sci. 130, 350 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Int. J. Heat Mass Transfer 103, 1214 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Hayat, S. Qayyum, A. Alsaedi, B. Ahmad, Results Phys. 8, 223 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    N. Bachok, A. Ishak, I. Pop, Physica B 406, 1767 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Sheikholeslami, M. Hatami, D.D. Ganji, J. Mol. Liq. 211, 577 (2015)CrossRefGoogle Scholar
  15. 15.
    T. Hayat, H. Khalid, M. Waqas, A. Alsaedi, Comput. Methods Appl. Mech. Eng. 341, 397 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Chenguang Yin, Liancun Zheng, Chaoli Zhang, Xinxin Zhang, Propul. Power Res. 6, 25 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Tabassum, M. Mustafa, Int. J. Heat Mass Transfer 123, 979 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Turkyilmazoglu, Comput. Fluids 94, 139 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    H.B. Santhosh, Mahesha, C.S.K. Raju, J. Nanofluids 7, 1130 (2018)CrossRefGoogle Scholar
  20. 20.
    C.S.K. Raju, S. Saleem, S.U. Mamatha, I. Hussain, Int. J. Therm. Sci. 132, 309 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Mamatha Upadhya, Mahesha, C.S.K. Raju, J. Heat Transf. 140, 092401 (2018)CrossRefGoogle Scholar
  22. 22.
    P. Durgaprasad, S.V.K. Varma, Mohammad Mainul Hoque, C.S.K. Raju, Neural Comp. Appl. (2018)  https://doi.org/10.1007/s00521-018-3451-z
  23. 23.
    Zhixiong Li, M. Sheikholeslami, Ahmad Shafee, S. Saleem, Ali J. Chamkha, J. Molec. Liq. 266, 181 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Saleem, S. Nadeem, M.M. Rashidi, C.S.K. Raju, Microsyst. Technol. 25, 683 (2019)CrossRefGoogle Scholar
  25. 25.
    M. Sheikholeslami, S.A. Shehzad, Zhixiong Li, Int. J. Heat Mass Transfer 125, 375 (2018)CrossRefGoogle Scholar
  26. 26.
    Saeid Taghavi Fardood, Ali Ramazani, Sang Woo Joo, J. Appl. Chem. Res. 12, 8 (2018)Google Scholar
  27. 27.
    A. Fakhri, S. Adami, J. Taiwan Inst. Chem. Eng. 45, 1001 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Mamatha Upadhya, C.S.K. Raju, S. Saleem, Results Phys. 9, 779 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Shehzad, F.M. Abbasi, T. Hayat, A. Alsaedi, J. Mol. Liq. 224, 274 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Kumar, S. Sood, arXiv:1511.06109 (2015)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • C. S. K. Raju
    • 1
  • S. U. Mamatha
    • 2
  • P. Rajadurai
    • 3
  • Ilyas Khan
    • 4
    Email author
  1. 1.Dept of MathematicsGITAM School of TechnologyBangaloreIndia
  2. 2.Dept of MathematicsGarden City UniversityBangaloreIndia
  3. 3.Dept of Mathematics, Srinivasa Ramanujan CentreSASRA UniversityTanjavurIndia
  4. 4.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations