Chaos in a calcium oscillation model via Atangana-Baleanu operator with strong memory

  • J. F. Gómez-AguilarEmail author
  • Kashif Ali Abro
  • Olusola Kolebaje
  • Ahmet Yildirim
Regular Article


Calcium oscillations have a significant importance in gesturing messengers for a wide variety of cells because cells exhibit calcium oscillations in response to external stimulation. The significance of the calcium oscillations vividly attract researchers, this is due to the empirical, numerical or experimental analyses on calcium oscillations and the lack of modern fractional techniques. An analytic study of chaotic behavior in the calcium oscillation model is carried out through fractional and non-fractional techniques. The governing non-linear differential equations of calcium oscillations have been established through newly defined Atangana-Baleanu fractional operators. In order to analyze the dynamics of the fractional calcium oscillation model, powerful techniques are applied to the governing non-linear fractional differential equations namely the (Laplace transform and modified homotopy perturbation transform method MHATM). The newly defined Atangana-Baleanu fractional approach is examined for the parameters that show periodic doubling and route to chaos. Finally, several similarities and differences have been underlined due to the fractional-order effect for the calcium oscillations with chaotic region at different scale.


  1. 1.
    R. Thul, T.C. Bellamy, H.L. Roderick, M.D. Bootman, S. Coombes, Calcium oscillations, in Cellular Oscillatory Mechanisms (Springer, New York, NY, 2008)Google Scholar
  2. 2.
    A. Atri, J. Amundson, D. Clapham, J. Sneyd, J. Biophys. 65, 1727 (1993)CrossRefGoogle Scholar
  3. 3.
    A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge University Press, Cambridge, 1996)Google Scholar
  4. 4.
    M. Brøns, M. Desroches, M. Krupa, Math. Popul. Stud. 22, 71 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.J. Sanderson, A.C. Charles, S. Boitano, E.R. Dirksen, Mol. Cell. Endocrinol. 98, 173 (1994)CrossRefGoogle Scholar
  6. 6.
    J. Sneyd, A.C. Charles, M.J. Sanderson, Am. J. Physiol. 266, 293 (1994)CrossRefGoogle Scholar
  7. 7.
    E. Harvey, V. Kirk, M. Wechselberger, J. Sneyd, J. Nonlinear Sci. 21, 639 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Weimar, Parallel Comput. 23, 1699 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G.B. Ermentrout, L. Edelstein-Keshet, J. Theor. Biol. 160, 97 (1993)CrossRefGoogle Scholar
  10. 10.
    X.-S. Yang, Appl. Math. Modell. 30, 200 (2006)CrossRefGoogle Scholar
  11. 11.
    T. Rüdiger, C. Stephen, R. Llewelyn, B. Martin, Proc. Natl. Acad. Sci. U.S.A. 109, 2150 (2011)Google Scholar
  12. 12.
    J. Latulippe, D. Lotito, D. Murby, PLoS ONE 13, 1 (2018)CrossRefGoogle Scholar
  13. 13.
    B. Markus, Q. Gillian, J. Math. Neurosci. 8, 9 (2018)CrossRefGoogle Scholar
  14. 14.
    E. Mirzakhalili, B.I. Epureanu, E. Gourgou, PLoS ONE 13, e0201302 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Droghei, E. Salusti, J. Petrol. Sci. Eng. 125, 181 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Ali-Abro, H. Mukarrum, M.B. Mirza, Eur. Phys. J. Plus 132, 439 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Sheikholeslami, M. Bhatti, Int. J. Heat Mass Transfer 109, 115 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Ali-Abro, A.A. Irfan, M.A. Sikandar, I. Khan, J. King Saud Univ., (2018)
  19. 19.
    J.F. Gómez-Aguilar, Turk. J. Electr. Eng. Comput. Sci. 24, 1421 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Ali-Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 113 (2018)CrossRefGoogle Scholar
  21. 21.
    K.A. Abro, I. Khan, A. Tassadiqq, Math. Model. Nat. Phenom. 13, 1 (2018)CrossRefGoogle Scholar
  22. 22.
    Z. Hammouch, T. Mekkaoui, Nonlinear Stud. 22, 565 (2015)MathSciNetGoogle Scholar
  23. 23.
    K. Ali-Abro, I. Khan, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 397 (2018)CrossRefGoogle Scholar
  24. 24.
    K. Ali-Abro, M.M. Rashidi, I. Khan, I.A. Abro, A. Tassadiq, J. Nanofluids 7, 738 (2018)CrossRefGoogle Scholar
  25. 25.
    K. Ali-Abro, H. Mukarrum, M.B. Mirza, Prog. Fractional Differ. Appl. 3, 69 (2017)CrossRefGoogle Scholar
  26. 26.
    H.W. Zhoua, S. Yang, J. Hydrol. 566, 910 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    A. Yusuf, M. Inc, A.I. Aliyu, D. Baleanu, Chaos, Solitons Fractals 116, 220 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Amanda, A. Atangana, Chaos, Solitons Fractals 116, 414 (2018)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M.A. Khan, S. Ullah, M. Farooq, Chaos, Solitons Fractals 116, 227 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Ali-Abro, A.D. Chandio, I.A. Abro, I. Khan, J. Therm. Anal. Calorim. 135, 2197 (2019)CrossRefGoogle Scholar
  31. 31.
    N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, A.S. Alshomrani, M.S. Alghamdi, Results Phys. 7, 789 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J. Hristov, Therm. Sci. 21, 827 (2017)CrossRefGoogle Scholar
  33. 33.
    Q. Al-Mdallal, K. Ali-Abro, I. Khan, Complexity 2018, 8131329 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Hristov, Therm. Sci. 20, 757 (2016)CrossRefGoogle Scholar
  35. 35.
    F. Ali, M. Saqib, I. Khan, N.A. Sheikh, Eur. Phys. J. Plus 131, 377 (2016)CrossRefGoogle Scholar
  36. 36.
    K. Ali-Abro, H.S. Shaikh, M. Norzieha, I. Khan, T. Asifa, Malays. J. Fundam. Appl. Sci. 14, 20 (2018)Google Scholar
  37. 37.
    I. Koca, A. Atangana, Therm. Sci. 21, 2299 (2017)CrossRefGoogle Scholar
  38. 38.
    D.M. Mugheri, K. Ali-Abro, M.A. Solangi, Int. J. Adv. Appl. Sci. 5, 97 (2018)CrossRefGoogle Scholar
  39. 39.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  40. 40.
    U. Kummer, L.F. Olsen, C.J. Dixon, A.K. Green, E. Bornberg-Bauer, G. Baier, Biophys. J. 79, 1188 (2000)CrossRefGoogle Scholar
  41. 41.
    Y. Suansook, K. Paithoonwattanakij, Math. Probl. Eng. 2015, 276059 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CONACyT-Tecnológico Nacional de México/CENIDET. Interior Internado Palmira S/N, Col. PalmiraCuernavacaMexico
  2. 2.Department of Basic Sciences and Related StudiesMehran University of Engineering and TechnologyJamshoroPakistan
  3. 3.Department of Physics, Adeyemi College of EducationOndoNigeria
  4. 4.Department of Mathematics, Science FacultyEge UniversityIzmirTurkey

Personalised recommendations