Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity

  • Nadia Mahak
  • Ghazala AkramEmail author
Regular Article


In this paper, we present the extension of the rational sine-cosine method and rational sinh-cosh method to construct the new exact solutions of a nonlinear evolution equation that appears in mathematical physics, specifically the perturbed nonlinear Schrödinger equation (NLSE) with Kerr law nonlinearity. As a result, trigonometric, hyperbolic and complex function solutions in the form of solitons and periodic wave solutions are characterized with some free parameters of the problem studied. The obtained results demonstrate that the proposed techniques are the significant addition for exploring various types of nonlinear partial differential equations (PDEs) in applied sciences. Moreover, graphical representations and physical explanations of some chosen exact solutions are plotted to describe the propagations of traveling wave solutions.


  1. 1.
    Yucui Guo, Introduction to Nonlinear Partial Differential Equations (Tsinghua University Press, Beijing, 2008)Google Scholar
  2. 2.
    G. Akram, N. Mahak, Eur. Phys. J. Plus 133, 212 (2018)CrossRefGoogle Scholar
  3. 3.
    C.E. Zaspel, Phys. Rev. Lett. 82, 723 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    N.Y.V. Aseeva, E.M. Gromov, I.V. Onosova, V.V. Tyutin, JETP Lett. 103, 653 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    H.C. Samet, M. Benarous, M. Asad-uz-zaman, U. Al Khawaja, Adv. Math. Phys. 2014, 323591 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Lenells, J. Nonlinear Sci. 20, 709 (2010)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.Q. Dai, Y. Wang, J. Liu, Nonlinear Dyn. 84, 1157 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Debussche, Y. Tsutsumi, J. Math. Pures Appl. 96, 363 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Bulut, Y. Pandir, S. Tuluce Demiray, Waves Random Complex Media 24, 439 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Kaplan, Ö. Ünsal, A. Bekir, Math. Methods Appl. Sci. 39, 2093 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    V.M. Fitio, I.Y. Yaremchuk, V.V. Romakh, Y.V. Bobitski, Appl. Comput. Electromagn. Soc. J. 30, 534 (2015)Google Scholar
  12. 12.
    Y. Zhang, C. Yang, W. Yu, M. Mirzazadeh, Q. Zhou, W. Liu, Nonlinear Dyn. 94, 1351 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Mirzazadeh, M. Eslami, E. Zerrad, M.F. Mahmood, A. Biswas, M. Belic, Nonlinear Dyn. 81, 1933 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Eslami, M. Mirzazadeh, Eur. Phys. J. Plus 128, 140 (2013)CrossRefGoogle Scholar
  15. 15.
    A.H. Bhrawy, M.A. Abdelkawy, A. Biswas, Commun. Nonlinear Sci. Numer. Simul. 18, 915 (2013)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.M. Wazwaz, Comput. Math. Appl. 50, 1685 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Younis, S.T.R. Rizvi, S. Ali, Appl. Math. Comput. 265, 994 (2015)MathSciNetGoogle Scholar
  18. 18.
    J. Liu, K. Yang, Chaos, Solitons Fractals 22, 111 (2004)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    X. Lü, J. Li, Nonlinear Dyn. 77, 135 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Batool, G. Akram, Opt. Quantum Electron. 49, 375 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Akram, F. Batool, Opt. Quantum. Electron. 49, 14 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Triki, T. Ak, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, A.H. Kara, T. Aydemir, Nonlinear Dyn. 89, 501 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Akram, N. Mahak, Opt. Quantum Electron. 50, 145 (2018)CrossRefGoogle Scholar
  24. 24.
    G. Akram, N. Mahak, Optik 164, 210 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    E.W. Weisstein, Concise Encyclopedia of Mathematics, 2nd ed. (CRC Press, New York, 2002)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations