Advertisement

Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers

  • M. R. Farajpour
  • A. R. ShahidiEmail author
  • A. Farajpour
Regular Article
  • 14 Downloads

Abstract.

In the present paper, an attempt is made to investigate the influences of biaxial preload on the vibrational behavior of small-scale composite sheets reinforced by shape memory alloy nanofibers. Three small-scale reinforced sheets are employed to form the system. In order to cover more practical cases, the biaxial preload and the compression ratio are assumed to be non-uniform. In addition, the three-layered composite sheet is embedded in a matrix with elastic properties. The Brinson model, nonlocal elasticity and Pasternak foundation model are used to take into account shape memory alloy effects, the influences of being size-dependent and the effects of the elastic matrix on the vibrational behavior, respectively. Performing a work/energy balance via Hamilton's principle yields the differential equations of motions. Finally, the natural frequencies are calculated via Galerkin's procedure. It is found that the natural frequencies of reinforced sheets under a preload of quadratic variation are higher than those of uniform and linear variations.

References

  1. 1.
    F.R. Phillips, D. Fang, H. Zheng, D.C. Lagoudas, Acta Mater. 59, 1871 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Sopu, M. Stoica, J. Eckert, Appl. Phys. Lett. 106, 211902 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    H. Zhao, M. Chang, X. Liu, J.L. Gabayno, H.T. Chen, J. Micromech. Microeng. 24, 095012 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Eur. Phys. J. Plus 132, 393 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 132, 19 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Zenkour, Eur. Phys. J. Plus 133, 196 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Arefi, M. Pourjamshidian, A.G. Arani, Eur. Phys. J. Plus 133, 193 (2018)CrossRefGoogle Scholar
  8. 8.
    K. Kiani, S. Soltani, Eur. Phys. J. Plus 133, 418 (2018)CrossRefGoogle Scholar
  9. 9.
    O. Rahmani, M. Shokrnia, H. Golmohammadi, S. Hosseini, Eur. Phys. J. Plus 133, 42 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Farajpour, A. Rastgoo, M. Farajpour, Compos. Struct. 180, 179 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Malekzadeh, A.G. Shenas, S. Ziaee, J. Braz. Soc. Mech. Sci. Eng. 40, 418 (2018)CrossRefGoogle Scholar
  12. 12.
    A.G. Shenas, P. Malekzadeh, Thin-Walled Struct. 106, 294 (2016)CrossRefGoogle Scholar
  13. 13.
    M.R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, IET Micro & Nano Lett. 11, 302 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour Mech. Adv. Mater. Struct. (2018),  https://doi.org/10.1080/15376494.2018.1432820 CrossRefGoogle Scholar
  15. 15.
    M.R. Farajpour, A. Shahidi, A. Farajpour, Micro & Nano Lett. 13, 1627 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Aydogdu, Physica E 41, 1651 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R. Aghababaei, J. Reddy, J. Sound Vib. 326, 277 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    P. Malekzadeh, M. Shojaee, Composites Part B 52, 84 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Yang, L. Ke, S. Kitipornchai, Physica E 42, 1727 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Farajpour, A. Rastgoo, Results Phys. 7, 1367 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S.R. Asemi, A. Farajpour, M. Borghei, A.H. Hassani, Lat. Am. J. Solids Struct. 11, 704 (2014)CrossRefGoogle Scholar
  22. 22.
    S.R. Asemi, M. Mohammadi, A. Farajpour, Lat. Am. J. Solids Struct. 11, 1515 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Farajpour, A. Rastgoo, M. Mohammadi, Physica B 509, 100 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    M.Z. Nejad, A. Hadi, A. Farajpour, Struct. Eng. Mech. 63, 161 (2017)Google Scholar
  25. 25.
    S.R. Asemi, A. Farajpour, IET Micro & Nano Lett. 9, 280 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, J. Solid Mech. 6, 98 (2014)Google Scholar
  27. 27.
    P. Malekzadeh, A. Setoodeh, A.A. Beni, Compos. Struct. 93, 1631 (2011)CrossRefGoogle Scholar
  28. 28.
    Ç. Demir, Ö. Civalek, Compos. Struct. 168, 872 (2017)CrossRefGoogle Scholar
  29. 29.
    A.G. Shenas, S. Ziaee, P. Malekzadeh, Compos. Struct. 157, 222 (2016)CrossRefGoogle Scholar
  30. 30.
    A.G. Shenas, S. Ziaee, P. Malekzadeh, Thin-Walled Struct. 118, 87 (2017)CrossRefGoogle Scholar
  31. 31.
    A.G. Shenas, P. Malekzadeh, S. Ziaee, Acta Mech. 228, 1115 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    C.M. Wang, Y.Y. Zhang, S. Kitipornchai, Int. J. Struct. Stab. Dyn. 7, 555 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    T. Murmu, S. Pradhan, J. Appl. Phys. 106, 104301 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Composites Part B 51, 121 (2013)CrossRefGoogle Scholar
  35. 35.
    L.C. Brinson, J. Intel. Mater. Syst. Struct. 4, 229 (1993)CrossRefGoogle Scholar
  36. 36.
    J.-S. Park, J.-H. Kim, S.-H. Moon, Compos. Struct. 63, 179 (2004)CrossRefGoogle Scholar
  37. 37.
    M. Farajpour, A. Shahidi, F. Tabataba'i-Nasab, A. Farajpour, Eur. Phys. J. Plus 133, 219 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Farajpour, A. Shahidi, A. Farajpour, Mater. Res. Express 5, 035026 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Borjavaran Center of Applied Science and TechnologyUniversity of Applied Sciences and TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations