An improved Liu chaotic circuit for weak signal detection

  • Jianming Liu
  • Zhenjun Lin
  • Wenbo WangEmail author
Regular Article


By inserting the cosine function to the right of the first row of the Liu chaotic system, a kind of new improved Liu chaotic circuit for weak signal detection is designed. The problems of the non-convergence of the output signal waveform and the narrow area detection by the traditional Duffing chaotic circuit for weak signal detection are resolved by the improved Liu chaotic circuit. The convergence and wide area detection of the improved Liu chaotic system are analyzed by the Flourier transform method, and they are proved by the Matlab simulation. The actual detection experiments show that the acoustic signal can be detected in wide area, the narrow-band noise interference can be overcome and the distorted acoustic signals can be detected by the designed improved Liu chaotic circuit for weak signal detection. The weak signal detection ability of the improved Liu chaotic circuit is superior to the traditional Duffing chaotic circuit. The new design concept of the improved Liu chaotic circuit shows a very high value for engineering application.


  1. 1.
    M. Chitre, S. Shahabudeen, M. Stojanovic, Mar. Technol. Sci. J. 42, 103 (2008)CrossRefGoogle Scholar
  2. 2.
    D.L. Birx, S.J. Pipenberg, Chaotic oscillators and complex mapping feed forward networks (CMFFNs) for signal detection in noisy environments, in Proceedings of the International Joint Conference on Neural Networks (IEEE, 2002)Google Scholar
  3. 3.
    G.Y. Wang, D.J. Chen, J.Y. Lin, X. Chen, IEEE Trans. Ind. Electron. 46, 440 (1999)CrossRefGoogle Scholar
  4. 4.
    Y. Li, B.J. Yang, Y. Yuan, X.H. Liu, Chin. Phys. B 16, 1072 (2007)CrossRefGoogle Scholar
  5. 5.
    Liu Hai-Bo, Wu De-Wei, Jin Wei et al., Acta Phys. Sin. 62, 050501 (2013)Google Scholar
  6. 6.
    Chen Yue, Liu Xiongying, Wu Zhongtang et al., Acta Phys. Sin. 66, 210501 (2017)Google Scholar
  7. 7.
    Zeng Zhe-Zhao, Zhou Yong, Hu Kai, Acta Phys. Sin. 64, 70505 (2015)Google Scholar
  8. 8.
    C.U. Choe, K. Hohne, H. Benner et al., Phys. Rev. E 72, 0362061 (2005)CrossRefGoogle Scholar
  9. 9.
    Wang Mengjiao, Zeng Yicheng, Xie Changqing et al., Acta Phys. Sin. 61, 180502 (2012)Google Scholar
  10. 10.
    Y.C. Xu, C.L. Yang, X.D. Qu, Chin. Phys. B 19, 030516 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Liu Chongxin, Far East J. Dyn. Syst. 8, 51 (2006)MathSciNetGoogle Scholar
  12. 12.
    Liu Jianming, Yang Xia, Gao Yuelong et al., Acta Phys. Sin. 65, 070501 (2016)Google Scholar
  13. 13.
    E.J. Mcdonald, D.J. Higham, Electron. Trans. Numer. Anal. Etna 12, 234 (2001)Google Scholar
  14. 14.
    Huang Hua, Wu Yang, Liu Zhenbang et al., Acta Phys. Sin. 67, 088402 (2018)Google Scholar
  15. 15.
    H. Zhou, P. Agarwal, Adv. Differ. Equ. 2017, 329 (2017)CrossRefGoogle Scholar
  16. 16.
    Robina Bashira, Ghulam Mustafaa, Praveen Agarwalb, J. Math. Comput. Sci. 18, 364 (2018)CrossRefGoogle Scholar
  17. 17.
    Michael Ruzhansky, Yeol Je Cho, Praveen Agarwal, Iván Area, Advances in Real and Complex Analysis with Applications (Springer, Singapore, 2018) pp. 107--241Google Scholar
  18. 18.
    R.P. Agarwal, M.J. Luo, P. Agarwal, Filomat 31, 3693 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Praveen Agarwal, Mohamed Jleli, Bessem Samet, Fixed Point Theory in Metric Spaces: Recent Advances and Applications (Springer, 2018) pp. 25--78Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab of Industrial Computer Control Engineering of Hebei ProvinceYanshan UniversityQinhuangdaoChina

Personalised recommendations