Advertisement

Adsorptive removal of C.I. Direct Yellow 142 from textile baths using nanosized silica-titanium oxide

  • Monika Wawrzkiewicz
  • Ewelina Polska-Adach
  • Małgorzata WiśniewskaEmail author
  • Gracja Fijałkowska
  • Olena Goncharuk
Open Access
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Focus Point on Nanotechnology, Nanomaterials and Interfaces

Abstract.

The adsorption properties of the silica-titanium mixed oxide consisting of 80 wt.% SiO2 and 20 wt.% TiO2 (ST20) in relation to C.I. Direct Yellow 142 (DY142) were examined. The experimental adsorption capacity of ST20 for DY142 determined at room temperature equals 104.8 mg/g. The equilibrium data were fitted by means of the Freundlich, Langmuir and Tempkin isotherm models. The values of determination coefficients (r2) confirmed applicability of the Langmuir (\( r^{2}=0.990\)) isotherm model, the monolayer capacity was found to be 106.5 mg/g. The kinetic parameters calculated from the pseudo-first-order (PFO) and pseudo-second-order (PSO) equations as well as the intraparticle diffusion (IPD) model revealed that the chemisorption is the rate limiting step as the r2 value obtained for the pseudo-second-order model equals 0.999. The PSO adsorption rate constant was found to be 0.070 g/mg min. The presence of additives such as electrolytes (Na2SO4 and Na2CO3) and surface active agents (anionic SDS, cationic CTAB and non-ionic Triton X-100) reduce dye retention compared to systems that do not contain these additives. The presence of the dye with the anionic character in the colloidal suspension of ST20 oxide particles results in considerable increase of the solid surface charge density. In the systems of mixed adsorbates (dye-surfactant and dye-salt) the specific changes in surface properties were obtained --the cationic surfactant has the greatest effect on the solid surface groups type and its concentration.

References

  1. 1.
    J. Mielicki, Outline of chemical treatment of textile products (Scientific and Technical Publisher, Warsaw, 1991)Google Scholar
  2. 2.
    X.-Ch. Jin, G.-Q. Liu, Z.-H. Xu, W.-J. Tao, Appl. Microbiol. Biotechnol. 74, 239 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Hessel, C. Allegre, M. Maisseu, F. Charbit, P. Moulin, J. Environ. Manag. 83, 171 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Wijannarong, S. Aroonsrimorakot, P. Thavipoke, A. Kumsopa, S. Sangjan, Biol. Environ. Eng. Sci. 5, 279 (2013)Google Scholar
  5. 5.
    M.T. Yagub, T. Kanti Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. 209, 172 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Rasalingam, R. Peng, R.T. Koodali, J. Environ. Manag. 128, 530 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Wawrzkiewicz, M. Wiśniewska, V.M. Gun’ko, V.I. Zarko, Powder Technol. 278, 306 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Wawrzkiewicz, M. Wiśniewska, A. Wołowicz, V.M. Gun’ko, V.I. Zarko, Micropor. Mesopor. Mater. 250, 128 (2017)CrossRefGoogle Scholar
  9. 9.
    U. Pal, A. Sandoval, S.I.U. Madrid, G. Corro, V. Sharma, P. Mohanty, Chemosphere 163, 142 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    F. Ciesielczyk, P. Bartczak, J. Zdarta, T. Jesionowski, J. Environ. Manag. 204, 123 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Tanzifi, M.T. Yaraki, A.D. Kiadehi, S.H. Hosseini, M. Olazar, A.K. Bharti, S. Agarwal, V.K. Gupta, A. Kazemi, J. Colloid Interface Sci. 510, 246 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    V.M. Gun’ko, J.P. Blitz, K. Gude, V.I. Zarko, E.V. Goncharuk, Y.M. Nychiporuk, R. Leboda, J. Skubiszewska-Zieba, V.D. Osovskii, Y.G. Ptushinskii, O.A. Mishchuk, S.V. Pakhovchishin, P.P. Gorbik, J. Colloid Interface Sci. 314, 119 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    V.M. Gun’ko, Y.M. Nychiporuk, V.I. Zarko, E.V. Goncharuk, O.A. Mishchuk, R. Leboda, J. Skubiszewska-Zie, Appl. Surf. Sci. 253, 3215 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    V.M. Gun’ko, E.M. Pakhlov, J. Skubiszewska-Zieba, J.P. Blitz, Vib. Spectrosc. 88, 56 (2017)CrossRefGoogle Scholar
  15. 15.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  16. 16.
    H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)Google Scholar
  17. 17.
    M.I. Tempkin, V. Pyzhev, Acta Phys. Chim. USSR 12, 327 (1940)Google Scholar
  18. 18.
    S. Lagergren, Kungliga Svenska Vetensk. Handl. 24, 1 (1898)Google Scholar
  19. 19.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)CrossRefGoogle Scholar
  20. 20.
    W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. ASCE 18, 31 (1963)Google Scholar
  21. 21.
    S. Chibowski, M. Krupa, J. Disp. Sci. Tech. 21, 761 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Chibowski, M. Wiśniewska, T. Urban, Adsorption 16, 321 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Wiśniewska, K. Terpiłowski, S. Chibowski, T. Urban, V.I. Zarko, V.M. Gun’ko, Powder Technol. 233, 190 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Wiśniewska, P. Nowicki, V.M. Bogatyrov, A. Nosal-Wiercińska, R. Pietrzak, Colloids Surf. A 492, 12 (2016)CrossRefGoogle Scholar
  25. 25.
    E. Skwarek, A. Gładysz-Płaska, Y. Bolbukh, Nanoscale Res. Lett. 12, 278 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    W. Janusz, Polish J. Chem. 68, 1871 (1994)Google Scholar
  27. 27.
    K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010)CrossRefGoogle Scholar
  28. 28.
    T.N. Webber, R.K. Chakravarti, J. Am. Inst. Chem. Eng. 20, 228 (1974)CrossRefGoogle Scholar
  29. 29.
    M. Wawrzkiewicz, M. Nowacka, L. Klapiszewski, Z. Hubicki, Open Chem. 13, 82 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Wawrzkiewicz, M. Wiśniewska, V.M. Gun’ko, Adsorption Sci. Technol. 35, 448 (2017)CrossRefGoogle Scholar
  31. 31.
    V.M. Gun’ko, V.I. Zarko, I.F. Mironyuk, E.V. Goncharuk, N.V. Guzenko, M.V. Borysenko, P.P. Gorbik, O.A. Mishchuk, W. Janusz, R. Leboda, J. Skubiszewska-Zie, Colloids Surf. A 240, 9 (2004)CrossRefGoogle Scholar
  32. 32.
    E. Skwarek, M. Matysek-Nawrocka, W. Janusz, V.I. Zarko, V.M. Gun’ko, Physicochem. Prob. Min. Process. 42, 153 (2008)Google Scholar
  33. 33.
    I. Ostolska, M. Wiśniewska, A. Nosal-Wiercińska, A. Szabelska, B. Gołe, Colloids Surf. A 488, 138 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Wiśniewska, Colloid Polym. Sci. 289, 341 (2011)CrossRefGoogle Scholar
  35. 35.
    M. Wiśniewska, P. Nowicki, A. Nosal-Wiercińska, R. Pietrzak, K. Szewczuk-Karpisz, I. Ostolska, D. Sternik, Colloids Surf. A 514, 137 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Wiśniewska, A. Nosal-Wiercińska, I. Ostolska, D. Sternik, P. Nowicki, R. Pietrzak, A. Bazan-Wozniak, O. Goncharuk, Nanoscale Res. Lett. 12, 2 (2017)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Monika Wawrzkiewicz
    • 1
  • Ewelina Polska-Adach
    • 1
  • Małgorzata Wiśniewska
    • 2
    Email author
  • Gracja Fijałkowska
    • 2
  • Olena Goncharuk
    • 3
  1. 1.Maria Curie Sklodowska UniversityFaculty of Chemistry, Department of Inorganic ChemistryLublinPoland
  2. 2.Maria Curie-Sklodowska UniversityFaculty of Chemistry, Department of Radiochemistry and Colloid ChemistryLublinPoland
  3. 3.National Academy of Science of Ukraine, O. O. Chuiko Institute of Surface ChemistryKievUkraine

Personalised recommendations