Advertisement

Fluid motion in a corrugated curved channel

  • Nnamdi Fidelis OkechiEmail author
  • Saleem Asghar
Regular Article
  • 5 Downloads

Abstract.

In this paper, pressure driven flow between two corrugated curved walls is analyzed. The combined effects of the corrugations and the radius of curvature of the channel on the fluid flow are investigated using the boundary perturbation method. The results show that the peak of the velocity increases with the radius of curvature and the width of the channel for a constant pressure gradient. The flow rate is increased by the corrugations for any phase difference between the corrugated curved walls depending on the corrugation wavenumber and the channel radius of curvature. For a sufficiently large corrugation wavenumber, the flow rate decreases, and the phase difference becomes irrelevant. However, the reduction in flow can be minimized by decreasing the channel radius of curvature. In general, a smooth curved channel will give the maximum flow rate for large corrugation wavenumber. The results of this study are consistent with those of a corrugated straight channel flow for sufficiently large radius of curvature.

References

  1. 1.
    S. Song, X. Yang, F. Xin, T.J. Lu, Phys. Fluids 30, 023604 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    A. Mohammadi, J.M. Floryan, J. Fluid Mech. 725, 23 (2013)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.C.F. Chow, K. Soda, ASME J. Appl. Mech. 40, 843 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    A.E. Bergles, J. Heat Transf. 100, 1082 (1988)CrossRefGoogle Scholar
  5. 5.
    T. Luelf, M. Tepper, H. Breisig, M. Wessling, J. Membr. Sci. 533, 302 (2017)CrossRefGoogle Scholar
  6. 6.
    A.E. Malevich, V.V. Mityushev, P.M. Adler, Acta Mech. 197, 247 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Mohammadi, J.M. Floryan, Theor. Comput. Fluid Dyn. 28, 549 (2014)CrossRefGoogle Scholar
  8. 8.
    H.V. Moradi, J.M. Floryan, Phys. Fluids 28, 074103 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    C.Y. Wang, J. Eng. Mech. Div. 102, 1088 (1976)Google Scholar
  10. 10.
    M. Buren, Y. Jian, L. Chang, J. Phys. D: Appl. Phys. 47, 425501 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    N. Phan-Thien, J.D. Atkinson, J. Eng. Mech. 109, 756 (1983)CrossRefGoogle Scholar
  12. 12.
    I. Sobey, J. Fluid Mech. 125, 359 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    T. Nishimura, H. Miyahita, S. Murakami, Y. Kawamura, Chem. Eng. Sci. 46, 757 (1991)CrossRefGoogle Scholar
  14. 14.
    C.O. Ng, C.Y. Wang, Transp. Porous Med. 85, 605 (2010)CrossRefGoogle Scholar
  15. 15.
    C.Y. Wang, J. Appl. Mech. 46, 462 (1976)CrossRefGoogle Scholar
  16. 16.
    M. Buren, Y. Jian, Electrophoresis 36, 1539 (2015)CrossRefGoogle Scholar
  17. 17.
    W.K.H. Chu, Z. Angew. Math. Mech. 76, 363 (1996)MathSciNetGoogle Scholar
  18. 18.
    C.Y. Wang, Mech. Res. Commun. 38, 249 (2011)CrossRefGoogle Scholar
  19. 19.
    Z.H.K. Chu, J. Phys. D 33, 462 (2003)Google Scholar
  20. 20.
    Z. Duan, Y.S. Muzychka, ASME J. Fluids Eng. 134, 041001 (2010)Google Scholar
  21. 21.
    Z. Duan, Y.S. Muzychka, ASME J. Fluids Eng. 130, 031102 (2008)CrossRefGoogle Scholar
  22. 22.
    H.V. Moradi, J.M. Floryan, AIAA J. 55, 5 (2017)CrossRefGoogle Scholar
  23. 23.
    H.V. Moradi, J.M. Floryan, J. Fluid Mech. 716, 280 (2013)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    W.R. Dean, Proc. R. Soc. London Ser. A 121, 402 (1928)ADSCrossRefGoogle Scholar
  25. 25.
    S.A. Berger, L. Talbot, L.S. Yao, Annu. Rev. Fluid. Mech. 15, 461 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    M. Zagzoule, P. Cathalifaud, J. Cousteix, J. Mauss, Phys. Fluids 24, 013601 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M. Akiyama, K.C. Cheng, Appl. Sci. Res. 32, 463 (1976)CrossRefGoogle Scholar
  28. 28.
    M. Turkyilmazoglu, Eur. J. Mech. B/Fluids 65, 184 (2017)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Turkyilmazoglu, Int. J. Heat Mass Transfer 85, 609 (2015)CrossRefGoogle Scholar
  30. 30.
    E. Lauga, A.D. Stroock, H.A. Stone, Phys. Fluids 16, 3051 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    H. Schlichting, K. Gersten, Boundary Layer Theory, 9th ed. (Springer-Verlag, Berlin, Heidelberg, 2017)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematics ProgrammeNational Mathematical Centre, Sheda-KwaliGwagwalada, AbujaNigeria
  2. 2.Department of MathematicsCOMSATS UniversityIslamabadPakistan

Personalised recommendations