Advertisement

Vibrational characterization of wavy atomic structures of single walled boron nitride nanotubes

  • Jigar A. Desai
  • Mitesh B. PanchalEmail author
Regular Article
  • 22 Downloads

Abstract.

This paper illustrates the variation in the natural frequencies of different modes of vibration considering the different types of waviness of the atomic structures of single walled boron nitride nanotubes (SWBNNTs), i.e., sinusoidal, elliptical and parabolic. The waviness present in the atomic structures of SWBNNTs causes a variation in the localized stiffness in waviness regions, thereby affecting the natural frequency of the SWBNNTs. Thus, it is important to understand the effects of the different types of possible waviness present in the atomic structures of SWBNNTs on their natural frequency. A vibrational analysis was performed for the bridged configuration (with both ends fixed) of SWBNNTs. Continuum modelling based analytical and finite element method (FEM) simulation approaches were used to estimate the natural frequencies of SWBNNTs with different types of wavy curvatures. The FEM approach reflects the shear deformation on the natural frequency of wavy nanotubes, whereas inclusion of shear deformation in the analytical approach adds complexity to the model, which requires more computational time for analysis. The obtained results indicate that the sinusoidal curvature of wavy atomic structures of SWBNNTs is more sensitive compared to the parabolic and elliptical curvatures of wavy nanotubes. Mode shape analysis is also found to be useful for estimating the type of curvature in the atomic structures of the nanotube. As presented herein, understanding the effect of waviness on the variation in the natural frequency of the wavy atomic structure of SWBNNTs is found to be useful for the practical realization of wavy atomic structure based nano-mechanical resonators for applications such as in sensor systems on the nano-scale level.

References

  1. 1.
    Erik T. Thostenson, Tsu-Wei Chou, J. Phys. D 36, 573 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Erik T. Thostenson, Tsu-Wei Chou, J. Phys. D 35, L77 (2002)CrossRefGoogle Scholar
  3. 3.
    Erik T. Thostenson, Zhifeng Ren, Tsu-Wei Chou, Compos. Sci. Technol. 61, 1899 (2001)CrossRefGoogle Scholar
  4. 4.
    Mitesh B. Panchal, S.H. Upadhyay, IET Nanobiotechnol. 8, 143 (2014)CrossRefGoogle Scholar
  5. 5.
    Mitesh B. Panchal, S.H. Upadhyay, IET Nanobiotechnol. 8, 149 (2014)CrossRefGoogle Scholar
  6. 6.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Nasreen G. Chopra, A. Zettl, Solid State Commun. 105, 297 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Mitesh B. Panchal, S.H. Upadhyay, Mol. Simul. 40, 1035 (2014)CrossRefGoogle Scholar
  9. 9.
    R. Chowdhury, S. Adhikari, IEEE Trans. Nanotechnol. 10, 659 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Luhua Li, Ying Chen, Zbigniew H. Stachurski, Prog. Nat. Sci.: Mater. Int. 23, 170 (2013)CrossRefGoogle Scholar
  11. 11.
    Preeti Joshi, Sanjay H. Upadhyay, Comput. Mater. Sci. 81, 332 (2014)CrossRefGoogle Scholar
  12. 12.
    Preeti Joshi, Sanjay H. Upadhyay, Comput. Mater. Sci. 87, 267 (2014)CrossRefGoogle Scholar
  13. 13.
    Preeti Joshi, Sanjay H. Upadhyay, J. Comput. Theor. Nanosci. 11, 2603 (2014)CrossRefGoogle Scholar
  14. 14.
    J.W. Ning, J.J. Zhang, Y.B. Pan, J.K. Guo, Sci. Eng. A 357, 392 (2003)CrossRefGoogle Scholar
  15. 15.
    D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76, 2868 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    W.L. Du Frane, O. Cervantes, G.F. Ellsworth, J.D. Kuntz, Diam. Relat. Mater. 62, 30 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Majid TabkhPaz, Shaghayegh Shajari, Mehdi Mahmoodi, Dong-Yeob Park, Hamsini Suresh, Simon S. Park, Composites Part B: Eng. 100, 19 (2016)CrossRefGoogle Scholar
  18. 18.
    Mitesh B. Panchal, S.H. Upadhyay, S.P. Harsha, Sensors Actuators A 197, 111 (2013)CrossRefGoogle Scholar
  19. 19.
    Mitesh B. Panchal, S.H. Upadhyay, Sensors Actuators A 203, 160 (2013)CrossRefGoogle Scholar
  20. 20.
    Marino Brcic, Marko Canadija, Josip Brnic, Proc. Eng. 100, 213 (2015)CrossRefGoogle Scholar
  21. 21.
    Itai Y. Stein, Brian L. Wardle, Influence of Waviness on the Elastic Properties of Aligned Carbon Nanotube Polymer Matrix Nanocomposites, in Proceedings of the 57th AIAA /ASCE /AHS /ASC Structures, Structural Dynamics, and Materials Conference (AIAA SciTech Forum, 2016)Google Scholar
  22. 22.
    Saurabh Kumar, S.H. Upadhyay, Anil Kumar, J. Comput. Theor. Nanosci. 12, 1841 (2015)CrossRefGoogle Scholar
  23. 23.
    F.T. Fisher, R.D. Bradshaw, L.C. Brinson, Compos. Sci. Technol. 63, 1689 (2003)CrossRefGoogle Scholar
  24. 24.
    Mitesh B. Panchal, S.H. Upadhyay, Curr. Nanosci. 9, 254 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Xu Liang, Shuling Hu, Shengping Shen, Compos. Struct. 111, 317 (2014)CrossRefGoogle Scholar
  26. 26.
    Bekir Akgoz, Omer Civalek, Acta Astron. 119, 1 (2016)CrossRefGoogle Scholar
  27. 27.
    Mogurampelly Santosh, Prabal K. Maiti, A.K. Sood, J. Nanosci. Nanotechnol. 9, 1 (2009)CrossRefGoogle Scholar
  28. 28.
    Singiresu S. Rao, Vibration of Continuous Systems (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007)Google Scholar
  29. 29.
    Mitesh B. Panchal, S.H. Upadhyay, J. Nanotechnol. Eng. Med. 3, 044501 (2013)CrossRefGoogle Scholar
  30. 30.
    Mitesh B. Panchal, S.H. Upadhyay, S.P. Harsha, NANO 7, 1250029 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Institute of TechnologyNirma UniversityAhmedabadIndia

Personalised recommendations