Advertisement

Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme

  • Farzad EbrahimiEmail author
  • Ali Dabbagh
Regular Article
  • 16 Downloads

Abstract.

The important effect of porosity on the mechanical behaviors of a continuum, makes it necessary to be accounted for while analyzing the structure. Motivated by this fact, a new porosity-dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) nanobeams by considering the coupling effects between density and Young’s moduli in porous materials. In the introduced homogenization method, which is a modified form of the power-law model, dependency of effective Young’s modulus to the mass density is covered. Based on the Hamilton principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adopted to emphasize the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

References

  1. 1.
    F. Ebrahimi, A. Rastgoo, Thin-Walled Struct. 46, 1402 (2008)CrossRefGoogle Scholar
  2. 2.
    H.-S. Shen, Compos. Struct. 91, 375 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Huang, X.-F. Li, J. Sound Vib. 329, 2291 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A.E. Alshorbagy, M. Eltaher, F. Mahmoud, Appl. Math. Model. 35, 412 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Simşek, T. Kocatürk, S. Akbaş, Compos. Struct. 94, 2358 (2012)CrossRefGoogle Scholar
  6. 6.
    F. Ebrahimi, Mech. Adv. Mater. Struct. 20, 854 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Ghiasian et al., Int. J. Mech. Sci. 81, 137 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Simşek, Compos. Struct. 133, 968 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Gharibi, M. Zamani Nejad, A. Hadi, J. Comput. Appl. Mech. 48, 89 (2017)Google Scholar
  10. 10.
    Y. Tang, T. Yang, Compos. Struct. 185, 393 (2018)CrossRefGoogle Scholar
  11. 11.
    N. Wattanasakulpong, V. Ungbhakorn, Aerospace Sci. Technol. 32, 111 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Mojahedin et al., Thin-Walled Struct. 99, 83 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Chen, S. Kitipornchai, J. Yang, Thin-Walled Struct. 107, 39 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Rezaei, A. Saidi, Compos. Part B: Eng. 91, 361 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, D. Wu, Aerospace Sci. Technol. 66, 83 (2017)CrossRefGoogle Scholar
  16. 16.
    H.A. Atmane, A. Tounsi, F. Bernard, Int. J. Mech. Mater. Design 13, 71 (2017)CrossRefGoogle Scholar
  17. 17.
    A.M. Zenkour, Compos. Struct. 201, 38 (2018)CrossRefGoogle Scholar
  18. 18.
    A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)CrossRefGoogle Scholar
  19. 19.
    S. Pradhan, T. Murmu, Physica E 42, 1293 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    R. Ansari, B. Arash, H. Rouhi, Compos. Struct. 93, 2419 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Mahmoud et al., J. Mech. Sci. Technol. 26, 3555 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Eltaher, A.E. Alshorbagy, F. Mahmoud, Appl. Math. Model. 37, 4787 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    F. Ebrahimi, E. Salari, J. Mech. Sci. Technol. 29, 3797 (2015)CrossRefGoogle Scholar
  24. 24.
    A.M. Zenkour, Physica E 79, 87 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    A. Ghorbanpour Arani et al., Proc. Inst. Mech. Eng. Part C 231, 387 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Farajpour, Mech. Adv. Mater. Struct. (2018)  https://doi.org/10.1080/15376494.2018.1432820
  27. 27.
    M. Hosseini et al., J. Comput. Appl. Mech. 49, 197 (2018)Google Scholar
  28. 28.
    M. Eltaher, S.A. Emam, F. Mahmoud, Appl. Math. Comput. 218, 7406 (2012)MathSciNetGoogle Scholar
  29. 29.
    S. Natarajan et al., Comput. Mater. Sci. 65, 74 (2012)CrossRefGoogle Scholar
  30. 30.
    O. Rahmani, O. Pedram, Int. J. Eng. Sci. 77, 55 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Nazemnezhad, S. Hosseini-Hashemi, Compos. Struct. 110, 192 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Zamani Nejad, A. Hadi, A. Rastgoo, Int. J. Eng. Sci. 103, 1 (2016)CrossRefGoogle Scholar
  34. 34.
    F. Ebrahimi, M.R. Barati, P. Haghi, J. Vib. Control (2017) https://doi.org/1077546317711537
  35. 35.
    S. Srividhya et al., Int. J. Eng. Sci. 125, 1 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)CrossRefGoogle Scholar
  37. 37.
    M.R. Barati, Int. J. Eng. Sci. 116, 1 (2017)CrossRefGoogle Scholar
  38. 38.
    F.W. Zok, C.G. Levi, Adv. Eng. Mater. 3, 15 (2001)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations