Advertisement

Analytical solutions of time-fractional wave equation by double Laplace transform method

  • Aziz Khan
  • Tahir Saeed Khan
  • Muhammed I. SyamEmail author
  • Hasib Khan
Regular Article

Abstract.

In this paper, we have considered an analytical solution of the time-fractional wave equation with the help of the double Laplace transform. With the proposed technique the exact solution is obtained. The method is very simple and easy. For an application, an example is provide.

References

  1. 1.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  2. 2.
    A. Kilbas, H. Srivastave, J. Trujillo, Science 204, 135 (2006)Google Scholar
  3. 3.
    W. Lin, J. Math. Anal. Appl. 332, 709 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 102, 285 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  6. 6.
    J.F. Gómez-Aguilar, A. Atangana, Eur. Phys. J. Plus 132, 13 (2017)CrossRefGoogle Scholar
  7. 7.
    L.C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Vol. 653 (AMS, 1999)Google Scholar
  8. 8.
    J.I. Diaz, F. De Thelin, J. Math. Anal. 25, 1085 (1994)Google Scholar
  9. 9.
    A. Khan, M.I. Syam, A. Zada, H. Khan, Eur. Phys. J. Plus 133, 264 (2018)CrossRefGoogle Scholar
  10. 10.
    B.S. Attilim, M.I. Syam, Chaos, Solitons Fractals 35, 5 (2008)Google Scholar
  11. 11.
    M.I. Syam, Chaos, Solitons Fractals 32, 2 (2007)CrossRefGoogle Scholar
  12. 12.
    M.I. Syam, B.S. Attili, Appl. Math. Comput. 170, 2 (2005)Google Scholar
  13. 13.
    R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett. 82, 3563 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    E. Lutz, Fractional langevin equation, in Fractional Dynamics: Recent Advances (2012) pp. 285--305Google Scholar
  15. 15.
    F. Mainardi, Radiophys. Quantum Electron. 38, 13 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Hu, R.P. Agarwal R.P., X.J. Yang, Abstr. Appl. Anal. 2012, 567401 (2012)Google Scholar
  17. 17.
    Z.F. Kocak, H. Bulut, G. Yel, AIP Conf. Proc. 1637, 504 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Z.M. Odibat, S. Momani, Appl. Math. Comput. 181, 767 (2006)MathSciNetGoogle Scholar
  19. 19.
    U. Ghosh, M.R. Ali, S. Raut, S. Sarkar, S. Das, arXiv:1712.07334 (2017)Google Scholar
  20. 20.
    A. Atangana, J.F. Gómez-Aguilar, Physica A 476, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 1144, 516 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    A. Coronel-Escamilla, J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, G.V. Guerrero-Ramírez, Chaos, Solitons Fractals 91, 248 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 173 (2016)CrossRefGoogle Scholar
  24. 24.
    V.F. Morales-Delgado, M.A. Taneco-Hernández, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 132, 47 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aziz Khan
    • 1
  • Tahir Saeed Khan
    • 1
  • Muhammed I. Syam
    • 2
    Email author
  • Hasib Khan
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of PeshawarKhybar PakhtunkhwaPakistan
  2. 2.Department of Mathematical SciencesUAE UniversityAl-AinUnited Arab Emirates
  3. 3.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringHohai UniversityNanjingChina
  4. 4.Shaheed Benazir Bhutto University, SheringalKhyber PakhtunkhwaPakistan

Personalised recommendations